حساب التفاضل والتكامل الأمثلة

أوجد القيمة العظمى المحلية والقيمة الصغرى المحلية f(x)=x^3-9x^2+27x
خطوة 1
أوجِد المشتق الأول للدالة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.2
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.2.3
اضرب في .
خطوة 1.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.3
اضرب في .
خطوة 2
أوجِد المشتق الثاني للدالة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.2
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.2.3
اضرب في .
خطوة 2.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.3
اضرب في .
خطوة 2.4
أوجِد المشتقة باستخدام قاعدة الدالة الثابتة.
انقر لعرض المزيد من الخطوات...
خطوة 2.4.1
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.4.2
أضف و.
خطوة 3
لإيجاد قيم الحد الأقصى المحلي والحد الأدنى المحلي للدالة، عيّن قيمة المشتق لتصبح مساوية لـ وأوجِد الحل.
خطوة 4
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.1
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 4.1.1.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.1.2
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 4.1.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 4.1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.1.2.3
اضرب في .
خطوة 4.1.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 4.1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 4.1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.1.3.3
اضرب في .
خطوة 4.2
المشتق الأول لـ بالنسبة إلى هو .
خطوة 5
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ ثم أوجِد حل المعادلة .
انقر لعرض المزيد من الخطوات...
خطوة 5.1
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ .
خطوة 5.2
حلّل المتعادل الأيسر إلى عوامل.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.1
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 5.2.1.1
أخرِج العامل من .
خطوة 5.2.1.2
أخرِج العامل من .
خطوة 5.2.1.3
أخرِج العامل من .
خطوة 5.2.1.4
أخرِج العامل من .
خطوة 5.2.1.5
أخرِج العامل من .
خطوة 5.2.2
حلّل إلى عوامل باستخدام قاعدة المربع الكامل.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.2.1
أعِد كتابة بالصيغة .
خطوة 5.2.2.2
تحقق من أن الحد الأوسط يساوي ضعف حاصل ضرب الأعداد المربعة في الحد الأول والحد الثالث.
خطوة 5.2.2.3
أعِد كتابة متعدد الحدود.
خطوة 5.2.2.4
حلّل إلى عوامل باستخدام قاعدة ثلاثي حدود المربع الكامل ، حيث و.
خطوة 5.3
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 5.3.1
اقسِم كل حد في على .
خطوة 5.3.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 5.3.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 5.3.2.1.1
ألغِ العامل المشترك.
خطوة 5.3.2.1.2
اقسِم على .
خطوة 5.3.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 5.3.3.1
اقسِم على .
خطوة 5.4
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 5.5
أضف إلى كلا المتعادلين.
خطوة 6
أوجِد القيم التي يكون عندها المشتق غير معرّف.
انقر لعرض المزيد من الخطوات...
خطوة 6.1
نطاق العبارة هو جميع الأعداد الحقيقية ما عدا ما يجعل العبارة غير معرّفة. في هذه الحالة، لا يوجد عدد حقيقي يجعل العبارة غير معرّفة.
خطوة 7
النقاط الحرجة اللازم حساب قيمتها.
خطوة 8
احسِب قيمة المشتق الثاني في . إذا كان المشتق الثاني موجبًا، فإنه إذن الحد الأدنى المحلي. أما إذا كان سالبًا، فإنه إذن الحد الأقصى المحلي.
خطوة 9
احسِب قيمة المشتق الثاني.
انقر لعرض المزيد من الخطوات...
خطوة 9.1
اضرب في .
خطوة 9.2
اطرح من .
خطوة 10
نظرًا إلى وجود نقطة واحدة على الأقل بها أو مشتق ثانٍ غير معرّف، طبّق اختبار المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 10.1
قسّم إلى فترات منفصلة حول قيم التي تجعل المشتق الأول مساويًا لـ أو غير معرّف.
خطوة 10.2
عوّض بأي عدد، مثل ، من الفترة في المشتق الأول للتحقق مما إذا كانت النتيجة سالبة أم موجبة.
انقر لعرض المزيد من الخطوات...
خطوة 10.2.1
استبدِل المتغير بـ في العبارة.
خطوة 10.2.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 10.2.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 10.2.2.1.1
ينتج عن رفع إلى أي قوة موجبة.
خطوة 10.2.2.1.2
اضرب في .
خطوة 10.2.2.1.3
اضرب في .
خطوة 10.2.2.2
بسّط بجمع الأعداد.
انقر لعرض المزيد من الخطوات...
خطوة 10.2.2.2.1
أضف و.
خطوة 10.2.2.2.2
أضف و.
خطوة 10.2.2.3
الإجابة النهائية هي .
خطوة 10.3
عوّض بأي عدد، مثل ، من الفترة في المشتق الأول للتحقق مما إذا كانت النتيجة سالبة أم موجبة.
انقر لعرض المزيد من الخطوات...
خطوة 10.3.1
استبدِل المتغير بـ في العبارة.
خطوة 10.3.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 10.3.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 10.3.2.1.1
ارفع إلى القوة .
خطوة 10.3.2.1.2
اضرب في .
خطوة 10.3.2.1.3
اضرب في .
خطوة 10.3.2.2
بسّط عن طريق الجمع والطرح.
انقر لعرض المزيد من الخطوات...
خطوة 10.3.2.2.1
اطرح من .
خطوة 10.3.2.2.2
أضف و.
خطوة 10.3.2.3
الإجابة النهائية هي .
خطوة 10.4
بما أن علامة المشتق الأول لم تتغيّر حول ، إذن هذه النقطة لا تمثل حدًا أقصى محليًا أو حدًا أدنى محليًا.
لا تمثل حدًا أقصى محليًا أو حدًا أدنى محليًا
خطوة 10.5
لا توجد نقاط قصوى أو دنيا محلية لـ .
لا توجد نقاط قصوى أو دنيا محلية
لا توجد نقاط قصوى أو دنيا محلية
خطوة 11