إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
خُذ نهاية بسط الكسر ونهاية القاسم.
خطوة 1.2
احسِب قيمة حد بسط الكسر.
خطوة 1.2.1
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 1.2.2
انقُل الأُس من خارج النهاية باستخدام قاعدة القوة للنهايات.
خطوة 1.2.3
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 1.2.4
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 1.2.5
احسِب قيم الحدود بالتعويض عن جميع حالات حدوث بـ .
خطوة 1.2.5.1
احسِب قيمة حد بالتعويض عن بـ .
خطوة 1.2.5.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 1.2.6
بسّط الإجابة.
خطوة 1.2.6.1
بسّط كل حد.
خطوة 1.2.6.1.1
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 1.2.6.1.2
اضرب في .
خطوة 1.2.6.1.3
اضرب في .
خطوة 1.2.6.2
أضف و.
خطوة 1.2.6.3
اطرح من .
خطوة 1.3
احسِب قيمة حد القاسم.
خطوة 1.3.1
احسِب قيمة النهاية.
خطوة 1.3.1.1
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 1.3.1.2
انقُل الأُس من خارج النهاية باستخدام قاعدة القوة للنهايات.
خطوة 1.3.1.3
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 1.3.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 1.3.3
بسّط الإجابة.
خطوة 1.3.3.1
بسّط كل حد.
خطوة 1.3.3.1.1
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 1.3.3.1.2
اضرب في .
خطوة 1.3.3.2
اطرح من .
خطوة 1.3.3.3
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 1.3.4
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 1.4
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 2
بما أن مكتوبة بصيغة غير معيّنة، طبّق قاعدة لوبيتال. تنص قاعدة لوبيتال على أن نهاية ناتج قسمة الدوال يساوي نهاية ناتج قسمة مشتقاتها.
خطوة 3
خطوة 3.1
أوجِد مشتقة البسط والقاسم.
خطوة 3.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.4
احسِب قيمة .
خطوة 3.4.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.4.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.4.3
اضرب في .
خطوة 3.5
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 3.6
أضف و.
خطوة 3.7
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.8
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.9
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 3.10
أضف و.
خطوة 4
خطوة 4.1
أخرِج العامل من .
خطوة 4.2
أخرِج العامل من .
خطوة 4.3
أخرِج العامل من .
خطوة 4.4
ألغِ العوامل المشتركة.
خطوة 4.4.1
أخرِج العامل من .
خطوة 4.4.2
ألغِ العامل المشترك.
خطوة 4.4.3
أعِد كتابة العبارة.
خطوة 5
قسّم النهاية بتطبيق قاعدة قسمة النهايات على النهاية بينما يقترب من .
خطوة 6
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 7
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 8
خطوة 8.1
احسِب قيمة حد بالتعويض عن بـ .
خطوة 8.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 9
خطوة 9.1
اقسِم على .
خطوة 9.2
أضف و.