حساب التفاضل والتكامل الأمثلة

أوجد قيمة التكامل التكامل من 0 إلى 1 لـ 6x^5e^(x^6) بالنسبة إلى x
خطوة 1
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 2
لنفترض أن . إذن ، لذا . أعِد الكتابة باستخدام و.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
افترض أن . أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1
أوجِد مشتقة .
خطوة 2.1.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.2
عوّض بالنهاية الدنيا عن في .
خطوة 2.3
ينتج عن رفع إلى أي قوة موجبة.
خطوة 2.4
عوّض بالنهاية العليا عن في .
خطوة 2.5
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 2.6
ستُستخدم القيم التي تم إيجادها لـ و في حساب قيمة التكامل المحدد.
خطوة 2.7
أعِد كتابة المسألة باستخدام و والنهايات الجديدة للتكامل.
خطوة 3
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
أعِد كتابة بالصيغة .
انقر لعرض المزيد من الخطوات...
خطوة 3.1.1
استخدِم لكتابة في صورة .
خطوة 3.1.2
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 3.1.3
اجمع و.
خطوة 3.1.4
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 3.1.4.1
أخرِج العامل من .
خطوة 3.1.4.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 3.1.4.2.1
أخرِج العامل من .
خطوة 3.1.4.2.2
ألغِ العامل المشترك.
خطوة 3.1.4.2.3
أعِد كتابة العبارة.
خطوة 3.1.4.2.4
اقسِم على .
خطوة 3.2
أعِد كتابة بالصيغة .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1
استخدِم لكتابة في صورة .
خطوة 3.2.2
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 3.2.3
اجمع و.
خطوة 3.2.4
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.4.1
أخرِج العامل من .
خطوة 3.2.4.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.4.2.1
أخرِج العامل من .
خطوة 3.2.4.2.2
ألغِ العامل المشترك.
خطوة 3.2.4.2.3
أعِد كتابة العبارة.
خطوة 3.2.4.2.4
اقسِم على .
خطوة 3.3
اجمع و.
خطوة 3.4
اجمع و.
خطوة 4
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 5
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 5.1
اجمع و.
خطوة 5.2
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.1
أخرِج العامل من .
خطوة 5.2.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.2.1
أخرِج العامل من .
خطوة 5.2.2.2
ألغِ العامل المشترك.
خطوة 5.2.2.3
أعِد كتابة العبارة.
خطوة 5.2.2.4
اقسِم على .
خطوة 6
لنفترض أن . إذن ، لذا . أعِد الكتابة باستخدام و.
انقر لعرض المزيد من الخطوات...
خطوة 6.1
افترض أن . أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 6.1.1
أوجِد مشتقة .
خطوة 6.1.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 6.2
عوّض بالنهاية الدنيا عن في .
خطوة 6.3
ينتج عن رفع إلى أي قوة موجبة.
خطوة 6.4
عوّض بالنهاية العليا عن في .
خطوة 6.5
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 6.6
ستُستخدم القيم التي تم إيجادها لـ و في حساب قيمة التكامل المحدد.
خطوة 6.7
أعِد كتابة المسألة باستخدام و والنهايات الجديدة للتكامل.
خطوة 7
اجمع و.
خطوة 8
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 9
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 9.1
اجمع و.
خطوة 9.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 9.2.1
ألغِ العامل المشترك.
خطوة 9.2.2
أعِد كتابة العبارة.
خطوة 9.3
اضرب في .
خطوة 10
تكامل بالنسبة إلى هو .
خطوة 11
عوّض وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 11.1
احسِب قيمة في وفي .
خطوة 11.2
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 11.2.1
بسّط.
خطوة 11.2.2
أي شيء مرفوع إلى هو .
خطوة 11.2.3
اضرب في .
خطوة 12
يمكن عرض النتيجة بصيغ متعددة.
الصيغة التامة:
الصيغة العشرية:
خطوة 13