إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
أوجِد المشتق الثاني.
خطوة 1.1.1
أوجِد المشتق الأول.
خطوة 1.1.1.1
استخدِم لكتابة في صورة .
خطوة 1.1.1.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.1.3
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 1.1.1.4
اجمع و.
خطوة 1.1.1.5
اجمع البسوط على القاسم المشترك.
خطوة 1.1.1.6
بسّط بَسْط الكسر.
خطوة 1.1.1.6.1
اضرب في .
خطوة 1.1.1.6.2
اطرح من .
خطوة 1.1.1.7
انقُل السالب أمام الكسر.
خطوة 1.1.1.8
بسّط.
خطوة 1.1.1.8.1
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 1.1.1.8.2
اضرب في .
خطوة 1.1.2
أوجِد المشتق الثاني.
خطوة 1.1.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.2.2
طبّق القواعد الأساسية للأُسس.
خطوة 1.1.2.2.1
أعِد كتابة بالصيغة .
خطوة 1.1.2.2.2
اضرب الأُسس في .
خطوة 1.1.2.2.2.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 1.1.2.2.2.2
اجمع و.
خطوة 1.1.2.2.2.3
انقُل السالب أمام الكسر.
خطوة 1.1.2.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.2.4
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 1.1.2.5
اجمع و.
خطوة 1.1.2.6
اجمع البسوط على القاسم المشترك.
خطوة 1.1.2.7
بسّط بَسْط الكسر.
خطوة 1.1.2.7.1
اضرب في .
خطوة 1.1.2.7.2
اطرح من .
خطوة 1.1.2.8
انقُل السالب أمام الكسر.
خطوة 1.1.2.9
اجمع و.
خطوة 1.1.2.10
اضرب في .
خطوة 1.1.2.11
بسّط العبارة.
خطوة 1.1.2.11.1
اضرب في .
خطوة 1.1.2.11.2
انقُل إلى القاسم باستخدام قاعدة الأُسس السالبة .
خطوة 1.1.3
المشتق الثاني لـ بالنسبة إلى هو .
خطوة 1.2
عيّن قيمة المشتق الثاني بحيث تصبح مساوية لـ ثم حل المعادلة .
خطوة 1.2.1
عيّن قيمة المشتق الثاني بحيث تصبح مساوية لـ .
خطوة 1.2.2
عيّن قيمة بسط الكسر بحيث تصبح مساوية لصفر.
خطوة 1.2.3
بما أن ، إذن لا توجد حلول.
لا يوجد حل
لا يوجد حل
لا يوجد حل
خطوة 2
خطوة 2.1
عيّن قيمة المجذور في بحيث تصبح أكبر من أو تساوي لإيجاد الموضع الذي تكون فيه العبارة معرّفة.
خطوة 2.2
النطاق هو جميع قيم التي تجعل العبارة معرّفة.
ترميز الفترة:
ترميز بناء المجموعات:
ترميز الفترة:
ترميز بناء المجموعات:
خطوة 3
أنشئ فترات حول القيم التي يكون عندها المشتق الثاني مساويًا لصفر أو غير معرّف.
خطوة 4
خطوة 4.1
استبدِل المتغير بـ في العبارة.
خطوة 4.2
بسّط النتيجة.
خطوة 4.2.1
بسّط القاسم.
خطوة 4.2.1.1
أعِد كتابة بالصيغة .
خطوة 4.2.1.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 4.2.1.3
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 4.2.1.4
اجمع و.
خطوة 4.2.1.5
اجمع البسوط على القاسم المشترك.
خطوة 4.2.1.6
بسّط بَسْط الكسر.
خطوة 4.2.1.6.1
اضرب في .
خطوة 4.2.1.6.2
أضف و.
خطوة 4.2.2
الإجابة النهائية هي .
خطوة 4.3
الرسم البياني مقعر لأسفل في الفترة لأن سالبة.
مقعر لأسفل خلال بما أن سالبة
مقعر لأسفل خلال بما أن سالبة
خطوة 5