حساب التفاضل والتكامل الأمثلة

الرسم البياني y=2 الجذر التربيعي لـ x-x
خطوة 1
أعِد ترتيب و.
خطوة 2
أوجِد نطاق بحيث يمكن انتقاء قائمة قيم لإيجاد قائمة النقاط، والتي ستساعد في رسم الدالة الجذرية بيانيًا.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
عيّن قيمة المجذور في بحيث تصبح أكبر من أو تساوي لإيجاد الموضع الذي تكون فيه العبارة معرّفة.
خطوة 2.2
النطاق هو جميع قيم التي تجعل العبارة معرّفة.
ترميز الفترة:
ترميز بناء المجموعات:
ترميز الفترة:
ترميز بناء المجموعات:
خطوة 3
لإيجاد نقطة نهاية العبارة الجذرية، عوّض بقيمة التي تساوي ، وهي أدنى قيمة في النطاق، في .
انقر لعرض المزيد من الخطوات...
خطوة 3.1
استبدِل المتغير بـ في العبارة.
خطوة 3.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1.1
اضرب في .
خطوة 3.2.1.2
أعِد كتابة بالصيغة .
خطوة 3.2.1.3
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
خطوة 3.2.1.4
اضرب في .
خطوة 3.2.2
أضف و.
خطوة 3.2.3
الإجابة النهائية هي .
خطوة 4
نقطة نهاية العبارة الجذرية هي .
خطوة 5
حدد بضع قيم من النطاق. سيكون من المفيد أكثر تحديد القيم بحيث تكون مجاورة لقيمة لنقطة نهاية العبارة الجذرية.
انقر لعرض المزيد من الخطوات...
خطوة 5.1
عوّض بقيمة التي تساوي في . في هذه الحالة، النقطة هي .
انقر لعرض المزيد من الخطوات...
خطوة 5.1.1
استبدِل المتغير بـ في العبارة.
خطوة 5.1.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 5.1.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 5.1.2.1.1
اضرب في .
خطوة 5.1.2.1.2
أي جذر لـ هو .
خطوة 5.1.2.1.3
اضرب في .
خطوة 5.1.2.2
أضف و.
خطوة 5.1.2.3
الإجابة النهائية هي .
خطوة 5.2
عوّض بقيمة التي تساوي في . في هذه الحالة، النقطة هي .
انقر لعرض المزيد من الخطوات...
خطوة 5.2.1
استبدِل المتغير بـ في العبارة.
خطوة 5.2.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.2.1
اضرب في .
خطوة 5.2.2.2
الإجابة النهائية هي .
خطوة 5.3
يمكن تمثيل الجذر التربيعي بيانيًا باستخدام النقاط الواقعة حول الرأس
خطوة 6