حساب التفاضل والتكامل الأمثلة

أوجد القيمة العظمى المحلية والقيمة الصغرى المحلية f(x)=(x+3)/(x-3)
خطوة 1
أوجِد المشتق الأول للدالة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أوجِد المشتقة باستخدام قاعدة القسمة التي تنص على أن هو حيث و.
خطوة 1.2
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.2.3
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.2.4
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.4.1
أضف و.
خطوة 1.2.4.2
اضرب في .
خطوة 1.2.5
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.2.6
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.2.7
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.2.8
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.8.1
أضف و.
خطوة 1.2.8.2
اضرب في .
خطوة 1.3
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1
طبّق خاصية التوزيع.
خطوة 1.3.2
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.2.1
جمّع الحدود المتعاكسة في .
انقر لعرض المزيد من الخطوات...
خطوة 1.3.2.1.1
اطرح من .
خطوة 1.3.2.1.2
اطرح من .
خطوة 1.3.2.2
اضرب في .
خطوة 1.3.2.3
اطرح من .
خطوة 1.3.3
انقُل السالب أمام الكسر.
خطوة 2
أوجِد المشتق الثاني للدالة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
أوجِد المشتقة باستخدام قاعدة المضاعف الثابت.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.1.2
طبّق القواعد الأساسية للأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.1
أعِد كتابة بالصيغة .
خطوة 2.1.2.2
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.2.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 2.1.2.2.2
اضرب في .
خطوة 2.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 2.3
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
اضرب في .
خطوة 2.3.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.5
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.5.1
أضف و.
خطوة 2.3.5.2
اضرب في .
خطوة 2.4
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.4.1
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 2.4.2
اجمع و.
خطوة 3
لإيجاد قيم الحد الأقصى المحلي والحد الأدنى المحلي للدالة، عيّن قيمة المشتق لتصبح مساوية لـ وأوجِد الحل.
خطوة 4
بما أنه لا توجد قيمة لـ تجعل المشتق الأول مساويًا لـ ، إذن لا توجد قيمة قصوى محلية.
لا توجد قيمة قصوى محلية
خطوة 5
لا توجد قيمة قصوى محلية
خطوة 6