حساب التفاضل والتكامل الأمثلة

Encuentre la Recta Tangente en (2π,0) y=sin(sin(x)) , (2pi,0)
,
خطوة 1
أوجِد المشتق الأول واحسِب القيمة عند و لإيجاد ميل خط المماس.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 1.1.2
مشتق بالنسبة إلى يساوي .
خطوة 1.1.3
استبدِل كافة حالات حدوث بـ .
خطوة 1.2
مشتق بالنسبة إلى يساوي .
خطوة 1.3
أعِد ترتيب عوامل .
خطوة 1.4
احسِب قيمة المشتق في .
خطوة 1.5
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.5.1
اطرح الدورات الكاملة البالغة حتى تصبح الزاوية أكبر من أو تساوي وأصغر من .
خطوة 1.5.2
القيمة الدقيقة لـ هي .
خطوة 1.5.3
اضرب في .
خطوة 1.5.4
اطرح الدورات الكاملة البالغة حتى تصبح الزاوية أكبر من أو تساوي وأصغر من .
خطوة 1.5.5
القيمة الدقيقة لـ هي .
خطوة 1.5.6
القيمة الدقيقة لـ هي .
خطوة 2
عوّض بقيمتَي الميل والنقطة في قاعدة ميل النقطة وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.1
استخدِم الميل ونقطة مُعطاة للتعويض بقيمتَي و في شكل ميل النقطة ، المشتق من معادلة الميل .
خطوة 2.2
بسّط المعادلة واتركها بِشكل ميل النقطة.
خطوة 2.3
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
أضف و.
خطوة 2.3.2
اضرب في .
خطوة 3