حساب التفاضل والتكامل الأمثلة

خطوة 1
أوجِد المشتقة باستخدام قاعدة القسمة التي تنص على أن هو حيث و.
خطوة 2
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 2.1.2
اضرب في .
خطوة 2.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.5
أضف و.
خطوة 3
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
انقُل .
خطوة 3.2
اضرب في .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1
ارفع إلى القوة .
خطوة 3.2.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 3.3
أضف و.
خطوة 4
انقُل إلى يسار .
خطوة 5
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 6
بسّط بالتحليل إلى عوامل.
انقر لعرض المزيد من الخطوات...
خطوة 6.1
اضرب في .
خطوة 6.2
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 6.2.1
أخرِج العامل من .
خطوة 6.2.2
أخرِج العامل من .
خطوة 6.2.3
أخرِج العامل من .
خطوة 7
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 7.1
أخرِج العامل من .
خطوة 7.2
ألغِ العامل المشترك.
خطوة 7.3
أعِد كتابة العبارة.
خطوة 8
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 8.1
طبّق خاصية التوزيع.
خطوة 8.2
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 8.2.1
اضرب في .
خطوة 8.2.2
اطرح من .
خطوة 8.3
أخرِج العامل من .
خطوة 8.4
أعِد كتابة بالصيغة .
خطوة 8.5
أخرِج العامل من .
خطوة 8.6
أعِد كتابة بالصيغة .
خطوة 8.7
انقُل السالب أمام الكسر.