حساب التفاضل والتكامل الأمثلة

خطوة 1
أوجِد المشتقة باستخدام قاعدة القسمة التي تنص على أن هو حيث و.
خطوة 2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 3
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.2
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 3.3
أضف و.
خطوة 3.4
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.5
اضرب.
انقر لعرض المزيد من الخطوات...
خطوة 3.5.1
اضرب في .
خطوة 3.5.2
اضرب في .
خطوة 4
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 5
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 5.1
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 5.2
أضف و.
خطوة 6
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 6.1
طبّق خاصية التوزيع.
خطوة 6.2
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.1.1
اضرب في .
خطوة 6.2.1.2
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.1.2.1
انقُل .
خطوة 6.2.1.2.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 6.2.1.2.3
أضف و.
خطوة 6.2.2
جمّع الحدود المتعاكسة في .
انقر لعرض المزيد من الخطوات...
خطوة 6.2.2.1
أضف و.
خطوة 6.2.2.2
أضف و.