حساب التفاضل والتكامل الأمثلة

حل ضمن المجال cos(2x)+sin(x)=1 , [0,2pi)
,
خطوة 1
اطرح من كلا المتعادلين.
خطوة 2
بسّط المتعادل الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
استخدِم متطابقة ضعف الزاوية لتحويل إلى .
خطوة 2.2
جمّع الحدود المتعاكسة في .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
اطرح من .
خطوة 2.2.2
اطرح من .
خطوة 3
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 3.1
أخرِج العامل من .
خطوة 3.2
ارفع إلى القوة .
خطوة 3.3
أخرِج العامل من .
خطوة 3.4
أخرِج العامل من .
خطوة 4
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 5
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 5.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 5.2
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 5.2.1
خُذ الجيب العكسي لكلا المتعادلين لاستخراج من داخل الجيب.
خطوة 5.2.2
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.2.1
القيمة الدقيقة لـ هي .
خطوة 5.2.3
دالة الجيب موجبة في الربعين الأول والثاني. لإيجاد الحل الثاني، اطرح زاوية المرجع من لإيجاد الحل في الربع الثاني.
خطوة 5.2.4
اطرح من .
خطوة 5.2.5
أوجِد فترة .
انقر لعرض المزيد من الخطوات...
خطوة 5.2.5.1
يمكن حساب فترة الدالة باستخدام .
خطوة 5.2.5.2
استبدِل بـ في القاعدة للفترة.
خطوة 5.2.5.3
القيمة المطلقة للعدد هي المسافة بين العدد والصفر. المسافة بين و تساوي .
خطوة 5.2.5.4
اقسِم على .
خطوة 5.2.6
فترة دالة هي ، لذا تتكرر القيم كل راديان في كلا الاتجاهين.
، لأي عدد صحيح
، لأي عدد صحيح
، لأي عدد صحيح
خطوة 6
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 6.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 6.2
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 6.2.1
اطرح من كلا المتعادلين.
خطوة 6.2.2
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.2.1
اقسِم كل حد في على .
خطوة 6.2.2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.2.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 6.2.2.2.1.1
ألغِ العامل المشترك.
خطوة 6.2.2.2.1.2
اقسِم على .
خطوة 6.2.2.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.2.3.1
قسمة قيمتين سالبتين على بعضهما البعض ينتج عنها قيمة موجبة.
خطوة 6.2.3
خُذ الجيب العكسي لكلا المتعادلين لاستخراج من داخل الجيب.
خطوة 6.2.4
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.4.1
القيمة الدقيقة لـ هي .
خطوة 6.2.5
دالة الجيب موجبة في الربعين الأول والثاني. لإيجاد الحل الثاني، اطرح زاوية المرجع من لإيجاد الحل في الربع الثاني.
خطوة 6.2.6
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 6.2.6.1
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 6.2.6.2
اجمع الكسور.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.6.2.1
اجمع و.
خطوة 6.2.6.2.2
اجمع البسوط على القاسم المشترك.
خطوة 6.2.6.3
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.6.3.1
انقُل إلى يسار .
خطوة 6.2.6.3.2
اطرح من .
خطوة 6.2.7
أوجِد فترة .
انقر لعرض المزيد من الخطوات...
خطوة 6.2.7.1
يمكن حساب فترة الدالة باستخدام .
خطوة 6.2.7.2
استبدِل بـ في القاعدة للفترة.
خطوة 6.2.7.3
القيمة المطلقة للعدد هي المسافة بين العدد والصفر. المسافة بين و تساوي .
خطوة 6.2.7.4
اقسِم على .
خطوة 6.2.8
فترة دالة هي ، لذا تتكرر القيم كل راديان في كلا الاتجاهين.
، لأي عدد صحيح
، لأي عدد صحيح
، لأي عدد صحيح
خطوة 7
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
، لأي عدد صحيح
خطوة 8
ادمج و في .
، لأي عدد صحيح
خطوة 9
أوجِد قيم التي ينتج عنها وجود قيمة في الفترة .
انقر لعرض المزيد من الخطوات...
خطوة 9.1
عوّض بـ عن وبسّط لمعرفة ما إذا كان الحل موجودًا في .
انقر لعرض المزيد من الخطوات...
خطوة 9.1.1
عوّض بـ عن .
خطوة 9.1.2
اضرب في .
خطوة 9.1.3
الفترة تتضمن .
خطوة 9.2
عوّض بـ عن وبسّط لمعرفة ما إذا كان الحل موجودًا في .
انقر لعرض المزيد من الخطوات...
خطوة 9.2.1
عوّض بـ عن .
خطوة 9.2.2
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 9.2.2.1
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 9.2.2.1.1
اضرب في .
خطوة 9.2.2.1.2
اضرب في .
خطوة 9.2.2.2
أضف و.
خطوة 9.2.3
الفترة تتضمن .
خطوة 9.3
عوّض بـ عن وبسّط لمعرفة ما إذا كان الحل موجودًا في .
انقر لعرض المزيد من الخطوات...
خطوة 9.3.1
عوّض بـ عن .
خطوة 9.3.2
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 9.3.2.1
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 9.3.2.1.1
اضرب في .
خطوة 9.3.2.1.2
اضرب في .
خطوة 9.3.2.2
أضف و.
خطوة 9.3.3
الفترة تتضمن .
خطوة 9.4
عوّض بـ عن وبسّط لمعرفة ما إذا كان الحل موجودًا في .
انقر لعرض المزيد من الخطوات...
خطوة 9.4.1
عوّض بـ عن .
خطوة 9.4.2
اضرب في .
خطوة 9.4.3
الفترة تتضمن .