حساب التفاضل والتكامل الأمثلة

أوجد قيمة التكامل تكامل e^(-x^4)(-4x^3) بالنسبة إلى x
خطوة 1
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 2
لنفترض أن . إذن ، لذا . أعِد الكتابة باستخدام و.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
افترض أن . أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1
أوجِد مشتقة .
خطوة 2.1.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.2
أعِد كتابة المسألة باستخدام و.
خطوة 3
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
أعِد كتابة بالصيغة .
انقر لعرض المزيد من الخطوات...
خطوة 3.1.1
استخدِم لكتابة في صورة .
خطوة 3.1.2
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 3.1.3
اجمع و.
خطوة 3.1.4
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 3.1.4.1
أخرِج العامل من .
خطوة 3.1.4.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 3.1.4.2.1
أخرِج العامل من .
خطوة 3.1.4.2.2
ألغِ العامل المشترك.
خطوة 3.1.4.2.3
أعِد كتابة العبارة.
خطوة 3.1.4.2.4
اقسِم على .
خطوة 3.2
اجمع و.
خطوة 3.3
اجمع و.
خطوة 4
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 5
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 5.1
اجمع و.
خطوة 5.2
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.1
أخرِج العامل من .
خطوة 5.2.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.2.1
أخرِج العامل من .
خطوة 5.2.2.2
ألغِ العامل المشترك.
خطوة 5.2.2.3
أعِد كتابة العبارة.
خطوة 5.2.2.4
اقسِم على .
خطوة 6
لنفترض أن . إذن ، لذا . أعِد الكتابة باستخدام و.
انقر لعرض المزيد من الخطوات...
خطوة 6.1
افترض أن . أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 6.1.1
أوجِد مشتقة .
خطوة 6.1.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 6.1.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 6.1.4
اضرب في .
خطوة 6.2
أعِد كتابة المسألة باستخدام و.
خطوة 7
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 7.1
انقُل السالب أمام الكسر.
خطوة 7.2
اجمع و.
خطوة 8
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 9
اضرب في .
خطوة 10
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 11
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 11.1
اجمع و.
خطوة 11.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 11.2.1
ألغِ العامل المشترك.
خطوة 11.2.2
أعِد كتابة العبارة.
خطوة 11.3
اضرب في .
خطوة 12
تكامل بالنسبة إلى هو .
خطوة 13
عوّض مجددًا بقيمة كل متغير في التكامل بالتعويض.
انقر لعرض المزيد من الخطوات...
خطوة 13.1
استبدِل كافة حالات حدوث بـ .
خطوة 13.2
استبدِل كافة حالات حدوث بـ .