إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
فكّ الكسر واضرب في القاسم المشترك.
خطوة 1.1.1
حلّل الكسر إلى عوامل.
خطوة 1.1.1.1
أعِد كتابة بالصيغة .
خطوة 1.1.1.2
بما أن كلا الحدّين هما مربعان كاملان، حلّل إلى عوامل باستخدام قاعدة الفرق بين مربعين، حيث و.
خطوة 1.1.1.3
أخرِج العامل من .
خطوة 1.1.1.3.1
أخرِج العامل من .
خطوة 1.1.1.3.2
ارفع إلى القوة .
خطوة 1.1.1.3.3
أخرِج العامل من .
خطوة 1.1.1.3.4
أخرِج العامل من .
خطوة 1.1.2
أنشئ كسرًا جديدًا لكل عامل في القاسم باستخدام العامل كقاسم، وقيمة غير معروفة كبسط الكسر. ونظرًا إلى أن العامل من الرتبة الثانية، يلزم وجود من الحدود في بسط الكسر. ودائمًا ما يكون عدد الحدود اللازم في بسط الكسر مساويًا لرتبة العامل في القاسم.
خطوة 1.1.3
اضرب كل كسر في المعادلة في قاسم العبارة الأصلية. في هذه الحالة، القاسم يساوي .
خطوة 1.1.4
اختزِل العبارة بحذف العوامل المشتركة.
خطوة 1.1.4.1
ألغِ العامل المشترك لـ .
خطوة 1.1.4.1.1
ألغِ العامل المشترك.
خطوة 1.1.4.1.2
أعِد كتابة العبارة.
خطوة 1.1.4.2
ألغِ العامل المشترك لـ .
خطوة 1.1.4.2.1
ألغِ العامل المشترك.
خطوة 1.1.4.2.2
اقسِم على .
خطوة 1.1.5
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
خطوة 1.1.5.1
طبّق خاصية التوزيع.
خطوة 1.1.5.2
طبّق خاصية التوزيع.
خطوة 1.1.5.3
طبّق خاصية التوزيع.
خطوة 1.1.6
بسّط ووحّد الحدود المتشابهة.
خطوة 1.1.6.1
بسّط كل حد.
خطوة 1.1.6.1.1
اضرب في .
خطوة 1.1.6.1.2
انقُل إلى يسار .
خطوة 1.1.6.1.3
أعِد كتابة بالصيغة .
خطوة 1.1.6.1.4
اضرب في .
خطوة 1.1.6.1.5
اضرب في .
خطوة 1.1.6.2
أضف و.
خطوة 1.1.6.3
أضف و.
خطوة 1.1.7
بسّط كل حد.
خطوة 1.1.7.1
ألغِ العامل المشترك لـ .
خطوة 1.1.7.1.1
ألغِ العامل المشترك.
خطوة 1.1.7.1.2
اقسِم على .
خطوة 1.1.7.2
طبّق خاصية التوزيع.
خطوة 1.1.7.3
اضرب في .
خطوة 1.1.7.4
ألغِ العامل المشترك لـ .
خطوة 1.1.7.4.1
ألغِ العامل المشترك.
خطوة 1.1.7.4.2
اقسِم على .
خطوة 1.1.7.5
طبّق خاصية التوزيع.
خطوة 1.1.7.6
اضرب في بجمع الأُسس.
خطوة 1.1.7.6.1
انقُل .
خطوة 1.1.7.6.2
اضرب في .
خطوة 1.1.8
انقُل .
خطوة 1.2
أنشئ معادلات لمتغيرات الكسور الجزئية واستخدمها لتعيين سلسلة معادلات.
خطوة 1.2.1
أنشئ معادلة لمتغيرات الكسر الجزئي عن طريق معادلة معاملات من كل متعادل. ولكي تكون المعادلة متساوية، يجب أن تكون المعاملات المتكافئة في كل متعادل متساوية.
خطوة 1.2.2
أنشئ معادلة لمتغيرات الكسر الجزئي عن طريق معادلة معاملات من كل متعادل. ولكي تكون المعادلة متساوية، يجب أن تكون المعاملات المتكافئة في كل متعادل متساوية.
خطوة 1.2.3
أنشئ معادلة لمتغيرات الكسر الجزئي عن طريق معادلة معاملات الحدود التي لا تتضمن . ولكي تكون المعادلة متساوية، يجب أن تكون المعاملات المتكافئة في كل متعادل متساوية.
خطوة 1.2.4
عيّن سلسلة المعادلات لإيجاد معاملات الكسور الجزئية.
خطوة 1.3
أوجِد حل سلسلة المعادلات.
خطوة 1.3.1
أعِد كتابة المعادلة في صورة .
خطوة 1.3.2
أعِد كتابة المعادلة في صورة .
خطوة 1.3.3
استبدِل كافة حالات حدوث بـ في كل معادلة.
خطوة 1.3.3.1
استبدِل كافة حالات حدوث في بـ .
خطوة 1.3.3.2
بسّط الطرف الأيمن.
خطوة 1.3.3.2.1
احذِف الأقواس.
خطوة 1.3.4
أوجِد قيمة في .
خطوة 1.3.4.1
أعِد كتابة المعادلة في صورة .
خطوة 1.3.4.2
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
خطوة 1.3.4.2.1
أضف إلى كلا المتعادلين.
خطوة 1.3.4.2.2
أضف و.
خطوة 1.3.5
أوجِد حل سلسلة المعادلات.
خطوة 1.3.6
اسرِد جميع الحلول.
خطوة 1.4
استبدِل كل معامل من معاملات الكسور الجزئية في بالقيم التي تم إيجادها لـ و و.
خطوة 1.5
بسّط.
خطوة 1.5.1
احذِف الأقواس.
خطوة 1.5.2
أضف و.
خطوة 1.5.3
انقُل السالب أمام الكسر.
خطوة 2
قسّم التكامل الواحد إلى عدة تكاملات.
خطوة 3
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 4
تكامل بالنسبة إلى هو .
خطوة 5
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 6
خطوة 6.1
افترض أن . أوجِد .
خطوة 6.1.1
أوجِد مشتقة .
خطوة 6.1.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 6.1.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 6.1.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 6.1.5
أضف و.
خطوة 6.2
أعِد كتابة المسألة باستخدام و.
خطوة 7
خطوة 7.1
اضرب في .
خطوة 7.2
انقُل إلى يسار .
خطوة 8
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 9
خطوة 9.1
اجمع و.
خطوة 9.2
ألغِ العامل المشترك لـ .
خطوة 9.2.1
ألغِ العامل المشترك.
خطوة 9.2.2
أعِد كتابة العبارة.
خطوة 9.3
اضرب في .
خطوة 10
تكامل بالنسبة إلى هو .
خطوة 11
بسّط.
خطوة 12
استبدِل كافة حالات حدوث بـ .