حساب التفاضل والتكامل الأمثلة

خطوة 1
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 1.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3
استبدِل كافة حالات حدوث بـ .
خطوة 2
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 3
اجمع و.
خطوة 4
اجمع البسوط على القاسم المشترك.
خطوة 5
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 5.1
اضرب في .
خطوة 5.2
اطرح من .
خطوة 6
اجمع و.
خطوة 7
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 8
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 9
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 10
اضرب في .
خطوة 11
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 12
بسّط الحدود.
انقر لعرض المزيد من الخطوات...
خطوة 12.1
أضف و.
خطوة 12.2
اجمع و.
خطوة 12.3
اضرب في .
خطوة 12.4
اجمع و.
خطوة 12.5
أخرِج العامل من .
خطوة 13
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 13.1
أخرِج العامل من .
خطوة 13.2
ألغِ العامل المشترك.
خطوة 13.3
أعِد كتابة العبارة.
خطوة 13.4
اقسِم على .
خطوة 14
أعِد ترتيب عوامل .