حساب التفاضل والتكامل الأمثلة

Hallar la derivada- d/dx f(x)=x الجذر التربيعي لـ x+4
خطوة 1
استخدِم لكتابة في صورة .
خطوة 2
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 3
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.3
استبدِل كافة حالات حدوث بـ .
خطوة 4
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 5
اجمع و.
خطوة 6
اجمع البسوط على القاسم المشترك.
خطوة 7
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 7.1
اضرب في .
خطوة 7.2
اطرح من .
خطوة 8
اجمع الكسور.
انقر لعرض المزيد من الخطوات...
خطوة 8.1
انقُل السالب أمام الكسر.
خطوة 8.2
اجمع و.
خطوة 8.3
انقُل إلى القاسم باستخدام قاعدة الأُسس السالبة .
خطوة 8.4
اجمع و.
خطوة 9
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 10
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 11
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 12
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 12.1
أضف و.
خطوة 12.2
اضرب في .
خطوة 13
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 14
اضرب في .
خطوة 15
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 16
اجمع و.
خطوة 17
اجمع البسوط على القاسم المشترك.
خطوة 18
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 18.1
انقُل .
خطوة 18.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 18.3
اجمع البسوط على القاسم المشترك.
خطوة 18.4
أضف و.
خطوة 18.5
اقسِم على .
خطوة 19
بسّط .
خطوة 20
انقُل إلى يسار .
خطوة 21
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 21.1
طبّق خاصية التوزيع.
خطوة 21.2
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 21.2.1
اضرب في .
خطوة 21.2.2
أضف و.