إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
أوجِد مشتقة المتعادلين.
خطوة 2
خطوة 2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.2
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 2.3
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 2.3.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.3.2
مشتق بالنسبة إلى يساوي .
خطوة 2.3.3
استبدِل كافة حالات حدوث بـ .
خطوة 2.4
أعِد كتابة بالصيغة .
خطوة 2.5
مشتق بالنسبة إلى يساوي .
خطوة 2.6
بسّط.
خطوة 2.6.1
طبّق خاصية التوزيع.
خطوة 2.6.2
اضرب في .
خطوة 2.6.3
أعِد ترتيب الحدود.
خطوة 3
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 4
عدّل المعادلة بمساواة قيمة الطرف الأيسر بقيمة الطرف الأيمن.
خطوة 5
خطوة 5.1
بسّط الطرف الأيسر.
خطوة 5.1.1
أعِد ترتيب العوامل في .
خطوة 5.2
أضف إلى كلا المتعادلين.
خطوة 5.3
اقسِم كل حد في على وبسّط.
خطوة 5.3.1
اقسِم كل حد في على .
خطوة 5.3.2
بسّط الطرف الأيسر.
خطوة 5.3.2.1
ألغِ العامل المشترك لـ .
خطوة 5.3.2.1.1
ألغِ العامل المشترك.
خطوة 5.3.2.1.2
أعِد كتابة العبارة.
خطوة 5.3.2.2
ألغِ العامل المشترك لـ .
خطوة 5.3.2.2.1
ألغِ العامل المشترك.
خطوة 5.3.2.2.2
أعِد كتابة العبارة.
خطوة 5.3.2.3
ألغِ العامل المشترك لـ .
خطوة 5.3.2.3.1
ألغِ العامل المشترك.
خطوة 5.3.2.3.2
اقسِم على .
خطوة 5.3.3
بسّط الطرف الأيمن.
خطوة 5.3.3.1
ألغِ العامل المشترك لـ .
خطوة 5.3.3.1.1
ألغِ العامل المشترك.
خطوة 5.3.3.1.2
أعِد كتابة العبارة.
خطوة 5.3.3.2
افصِل الكسور.
خطوة 5.3.3.3
حوّل من إلى .
خطوة 5.3.3.4
حوّل من إلى .
خطوة 6
استبدِل بـ .