حساب التفاضل والتكامل الأمثلة

Encuentre la derivada de 2nd f(x)=(x^2-1)/(x^2+1)
خطوة 1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أوجِد المشتقة باستخدام قاعدة القسمة التي تنص على أن هو حيث و.
خطوة 1.2
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.2.3
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.2.4
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.4.1
أضف و.
خطوة 1.2.4.2
انقُل إلى يسار .
خطوة 1.2.5
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.2.6
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.2.7
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.2.8
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.8.1
أضف و.
خطوة 1.2.8.2
اضرب في .
خطوة 1.3
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1
طبّق خاصية التوزيع.
خطوة 1.3.2
طبّق خاصية التوزيع.
خطوة 1.3.3
طبّق خاصية التوزيع.
خطوة 1.3.4
طبّق خاصية التوزيع.
خطوة 1.3.5
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.5.1
جمّع الحدود المتعاكسة في .
انقر لعرض المزيد من الخطوات...
خطوة 1.3.5.1.1
اطرح من .
خطوة 1.3.5.1.2
أضف و.
خطوة 1.3.5.2
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.5.2.1
اضرب في .
خطوة 1.3.5.2.2
اضرب في .
خطوة 1.3.5.3
أضف و.
خطوة 2
أوجِد المشتق الثاني.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.2
أوجِد المشتقة باستخدام قاعدة القسمة التي تنص على أن هو حيث و.
خطوة 2.3
أوجِد المشتقة باستخدام قاعدة القوة.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 2.3.1.2
اضرب في .
خطوة 2.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.3
اضرب في .
خطوة 2.4
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 2.4.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.4.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.4.3
استبدِل كافة حالات حدوث بـ .
خطوة 2.5
بسّط بالتحليل إلى عوامل.
انقر لعرض المزيد من الخطوات...
خطوة 2.5.1
اضرب في .
خطوة 2.5.2
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 2.5.2.1
أخرِج العامل من .
خطوة 2.5.2.2
أخرِج العامل من .
خطوة 2.5.2.3
أخرِج العامل من .
خطوة 2.6
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 2.6.1
أخرِج العامل من .
خطوة 2.6.2
ألغِ العامل المشترك.
خطوة 2.6.3
أعِد كتابة العبارة.
خطوة 2.7
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.8
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.9
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.10
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 2.10.1
أضف و.
خطوة 2.10.2
اضرب في .
خطوة 2.11
ارفع إلى القوة .
خطوة 2.12
ارفع إلى القوة .
خطوة 2.13
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 2.14
أضف و.
خطوة 2.15
اطرح من .
خطوة 2.16
اجمع و.
خطوة 2.17
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.17.1
طبّق خاصية التوزيع.
خطوة 2.17.2
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 2.17.2.1
اضرب في .
خطوة 2.17.2.2
اضرب في .
خطوة 2.17.3
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 2.17.3.1
أخرِج العامل من .
خطوة 2.17.3.2
أخرِج العامل من .
خطوة 2.17.3.3
أخرِج العامل من .
خطوة 2.17.4
أخرِج العامل من .
خطوة 2.17.5
أعِد كتابة بالصيغة .
خطوة 2.17.6
أخرِج العامل من .
خطوة 2.17.7
أعِد كتابة بالصيغة .
خطوة 2.17.8
انقُل السالب أمام الكسر.
خطوة 3
أوجِد المشتق الثالث.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.2
أوجِد المشتقة باستخدام قاعدة القسمة التي تنص على أن هو حيث و.
خطوة 3.3
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 3.3.1.2
اضرب في .
خطوة 3.3.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.3.3
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.3.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.3.5
اضرب في .
خطوة 3.3.6
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 3.3.7
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.7.1
أضف و.
خطوة 3.3.7.2
انقُل إلى يسار .
خطوة 3.4
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 3.4.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 3.4.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.4.3
استبدِل كافة حالات حدوث بـ .
خطوة 3.5
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 3.5.1
اضرب في .
خطوة 3.5.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.5.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.5.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 3.5.5
اجمع الكسور.
انقر لعرض المزيد من الخطوات...
خطوة 3.5.5.1
أضف و.
خطوة 3.5.5.2
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 3.5.5.2.1
انقُل إلى يسار .
خطوة 3.5.5.2.2
اضرب في .
خطوة 3.5.5.3
اجمع و.
خطوة 3.5.5.4
انقُل السالب أمام الكسر.
خطوة 3.6
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 3.6.1
طبّق خاصية التوزيع.
خطوة 3.6.2
طبّق خاصية التوزيع.
خطوة 3.6.3
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.6.3.1
استخدِم مبرهنة ذات الحدين.
خطوة 3.6.3.2
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 3.6.3.2.1
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 3.6.3.2.1.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 3.6.3.2.1.2
اضرب في .
خطوة 3.6.3.2.2
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 3.6.3.2.2.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 3.6.3.2.2.2
اضرب في .
خطوة 3.6.3.2.3
اضرب في .
خطوة 3.6.3.2.4
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 3.6.3.2.5
اضرب في .
خطوة 3.6.3.2.6
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 3.6.3.3
طبّق خاصية التوزيع.
خطوة 3.6.3.4
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 3.6.3.4.1
اضرب في .
خطوة 3.6.3.4.2
اضرب في .
خطوة 3.6.3.4.3
اضرب في .
خطوة 3.6.3.5
طبّق خاصية التوزيع.
خطوة 3.6.3.6
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 3.6.3.6.1
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 3.6.3.6.1.1
انقُل .
خطوة 3.6.3.6.1.2
اضرب في .
انقر لعرض المزيد من الخطوات...
خطوة 3.6.3.6.1.2.1
ارفع إلى القوة .
خطوة 3.6.3.6.1.2.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 3.6.3.6.1.3
أضف و.
خطوة 3.6.3.6.2
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 3.6.3.6.2.1
انقُل .
خطوة 3.6.3.6.2.2
اضرب في .
انقر لعرض المزيد من الخطوات...
خطوة 3.6.3.6.2.2.1
ارفع إلى القوة .
خطوة 3.6.3.6.2.2.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 3.6.3.6.2.3
أضف و.
خطوة 3.6.3.6.3
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 3.6.3.6.3.1
انقُل .
خطوة 3.6.3.6.3.2
اضرب في .
انقر لعرض المزيد من الخطوات...
خطوة 3.6.3.6.3.2.1
ارفع إلى القوة .
خطوة 3.6.3.6.3.2.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 3.6.3.6.3.3
أضف و.
خطوة 3.6.3.7
طبّق خاصية التوزيع.
خطوة 3.6.3.8
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 3.6.3.8.1
اضرب في .
خطوة 3.6.3.8.2
اضرب في .
خطوة 3.6.3.8.3
اضرب في .
خطوة 3.6.3.8.4
اضرب في .
خطوة 3.6.3.9
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 3.6.3.9.1
اضرب في .
خطوة 3.6.3.9.2
اضرب في .
خطوة 3.6.3.10
أعِد كتابة بالصيغة .
خطوة 3.6.3.11
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
انقر لعرض المزيد من الخطوات...
خطوة 3.6.3.11.1
طبّق خاصية التوزيع.
خطوة 3.6.3.11.2
طبّق خاصية التوزيع.
خطوة 3.6.3.11.3
طبّق خاصية التوزيع.
خطوة 3.6.3.12
بسّط ووحّد الحدود المتشابهة.
انقر لعرض المزيد من الخطوات...
خطوة 3.6.3.12.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 3.6.3.12.1.1
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 3.6.3.12.1.1.1
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 3.6.3.12.1.1.2
أضف و.
خطوة 3.6.3.12.1.2
اضرب في .
خطوة 3.6.3.12.1.3
اضرب في .
خطوة 3.6.3.12.1.4
اضرب في .
خطوة 3.6.3.12.2
أضف و.
خطوة 3.6.3.13
طبّق خاصية التوزيع.
خطوة 3.6.3.14
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 3.6.3.14.1
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 3.6.3.14.1.1
اضرب في .
انقر لعرض المزيد من الخطوات...
خطوة 3.6.3.14.1.1.1
ارفع إلى القوة .
خطوة 3.6.3.14.1.1.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 3.6.3.14.1.2
أضف و.
خطوة 3.6.3.14.2
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 3.6.3.14.2.1
انقُل .
خطوة 3.6.3.14.2.2
اضرب في .
انقر لعرض المزيد من الخطوات...
خطوة 3.6.3.14.2.2.1
ارفع إلى القوة .
خطوة 3.6.3.14.2.2.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 3.6.3.14.2.3
أضف و.
خطوة 3.6.3.14.3
اضرب في .
خطوة 3.6.3.15
وسّع بضرب كل حد في العبارة الأولى في كل حد في العبارة الثانية.
خطوة 3.6.3.16
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 3.6.3.16.1
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 3.6.3.16.1.1
انقُل .
خطوة 3.6.3.16.1.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 3.6.3.16.1.3
أضف و.
خطوة 3.6.3.16.2
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 3.6.3.16.3
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 3.6.3.16.3.1
انقُل .
خطوة 3.6.3.16.3.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 3.6.3.16.3.3
أضف و.
خطوة 3.6.3.16.4
اضرب في .
خطوة 3.6.3.16.5
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 3.6.3.16.5.1
انقُل .
خطوة 3.6.3.16.5.2
اضرب في .
انقر لعرض المزيد من الخطوات...
خطوة 3.6.3.16.5.2.1
ارفع إلى القوة .
خطوة 3.6.3.16.5.2.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 3.6.3.16.5.3
أضف و.
خطوة 3.6.3.16.6
اضرب في .
خطوة 3.6.3.17
أضف و.
خطوة 3.6.3.18
أضف و.
خطوة 3.6.3.19
طبّق خاصية التوزيع.
خطوة 3.6.3.20
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 3.6.3.20.1
اضرب في .
خطوة 3.6.3.20.2
اضرب في .
خطوة 3.6.3.20.3
اضرب في .
خطوة 3.6.3.20.4
اضرب في .
خطوة 3.6.3.21
اطرح من .
خطوة 3.6.3.22
اطرح من .
خطوة 3.6.3.23
اطرح من .
خطوة 3.6.3.24
أضف و.
خطوة 3.6.3.25
أعِد كتابة بصيغة محلّلة إلى عوامل.
انقر لعرض المزيد من الخطوات...
خطوة 3.6.3.25.1
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 3.6.3.25.1.1
أخرِج العامل من .
خطوة 3.6.3.25.1.2
أخرِج العامل من .
خطوة 3.6.3.25.1.3
أخرِج العامل من .
خطوة 3.6.3.25.1.4
أخرِج العامل من .
خطوة 3.6.3.25.1.5
أخرِج العامل من .
خطوة 3.6.3.25.1.6
أخرِج العامل من .
خطوة 3.6.3.25.1.7
أخرِج العامل من .
خطوة 3.6.3.25.2
أخرِج العامل المشترك الأكبر من كل مجموعة.
انقر لعرض المزيد من الخطوات...
خطوة 3.6.3.25.2.1
جمّع أول حدين وآخر حدين.
خطوة 3.6.3.25.2.2
أخرِج العامل المشترك الأكبر من كل مجموعة.
خطوة 3.6.3.25.3
حلّل متعدد الحدود إلى عوامل بإخراج العامل المشترك الأكبر، .
خطوة 3.6.3.25.4
أعِد كتابة بالصيغة .
خطوة 3.6.3.25.5
أعِد كتابة بالصيغة .
خطوة 3.6.3.25.6
بما أن كلا الحدّين هما مربعان كاملان، حلّل إلى عوامل باستخدام قاعدة الفرق بين مربعين، حيث و.
خطوة 3.6.3.25.7
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 3.6.3.25.7.1
أعِد كتابة بالصيغة .
خطوة 3.6.3.25.7.2
بما أن كلا الحدّين هما مربعان كاملان، حلّل إلى عوامل باستخدام قاعدة الفرق بين مربعين، حيث و.
خطوة 3.6.3.25.8
اجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 3.6.3.25.8.1
أخرِج العامل من .
خطوة 3.6.3.25.8.2
أعِد كتابة بالصيغة .
خطوة 3.6.3.25.8.3
أخرِج العامل من .
خطوة 3.6.3.25.8.4
أعِد كتابة بالصيغة .
خطوة 3.6.3.25.8.5
ارفع إلى القوة .
خطوة 3.6.3.25.8.6
ارفع إلى القوة .
خطوة 3.6.3.25.8.7
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 3.6.3.25.8.8
أضف و.
خطوة 3.6.3.25.9
اضرب في .
خطوة 3.6.4
جمّع الحدود.
انقر لعرض المزيد من الخطوات...
خطوة 3.6.4.1
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 3.6.4.1.1
أخرِج العامل من .
خطوة 3.6.4.1.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 3.6.4.1.2.1
أخرِج العامل من .
خطوة 3.6.4.1.2.2
ألغِ العامل المشترك.
خطوة 3.6.4.1.2.3
أعِد كتابة العبارة.
خطوة 3.6.4.2
انقُل السالب أمام الكسر.
خطوة 3.6.4.3
اضرب في .
خطوة 3.6.4.4
اضرب في .
خطوة 4
أوجِد المشتق الرابع.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 4.2
أوجِد المشتقة باستخدام قاعدة القسمة التي تنص على أن هو حيث و.
خطوة 4.3
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 4.3.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 4.3.2
اضرب في .
خطوة 4.4
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 4.5
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 4.5.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 4.5.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.5.3
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 4.5.4
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 4.5.4.1
أضف و.
خطوة 4.5.4.2
اضرب في .
خطوة 4.6
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 4.7
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 4.7.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 4.7.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.7.3
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 4.7.4
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 4.7.4.1
أضف و.
خطوة 4.7.4.2
اضرب في .
خطوة 4.7.5
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.7.6
بسّط بجمع الحدود.
انقر لعرض المزيد من الخطوات...
خطوة 4.7.6.1
اضرب في .
خطوة 4.7.6.2
أضف و.
خطوة 4.8
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 4.8.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 4.8.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.8.3
استبدِل كافة حالات حدوث بـ .
خطوة 4.9
بسّط بالتحليل إلى عوامل.
انقر لعرض المزيد من الخطوات...
خطوة 4.9.1
اضرب في .
خطوة 4.9.2
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 4.9.2.1
أخرِج العامل من .
خطوة 4.9.2.2
أخرِج العامل من .
خطوة 4.9.2.3
أخرِج العامل من .
خطوة 4.10
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 4.10.1
أخرِج العامل من .
خطوة 4.10.2
ألغِ العامل المشترك.
خطوة 4.10.3
أعِد كتابة العبارة.
خطوة 4.11
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 4.12
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.13
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 4.14
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 4.14.1
أضف و.
خطوة 4.14.2
اضرب في .
خطوة 4.15
ارفع إلى القوة .
خطوة 4.16
ارفع إلى القوة .
خطوة 4.17
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 4.18
أضف و.
خطوة 4.19
اجمع و.
خطوة 4.20
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 4.20.1
طبّق خاصية التوزيع.
خطوة 4.20.2
طبّق خاصية التوزيع.
خطوة 4.20.3
طبّق خاصية التوزيع.
خطوة 4.20.4
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 4.20.4.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 4.20.4.1.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 4.20.4.1.1.1
اضرب في .
خطوة 4.20.4.1.1.2
اضرب في .
خطوة 4.20.4.1.1.3
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
انقر لعرض المزيد من الخطوات...
خطوة 4.20.4.1.1.3.1
طبّق خاصية التوزيع.
خطوة 4.20.4.1.1.3.2
طبّق خاصية التوزيع.
خطوة 4.20.4.1.1.3.3
طبّق خاصية التوزيع.
خطوة 4.20.4.1.1.4
بسّط ووحّد الحدود المتشابهة.
انقر لعرض المزيد من الخطوات...
خطوة 4.20.4.1.1.4.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 4.20.4.1.1.4.1.1
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 4.20.4.1.1.4.1.2
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 4.20.4.1.1.4.1.2.1
انقُل .
خطوة 4.20.4.1.1.4.1.2.2
اضرب في .
خطوة 4.20.4.1.1.4.1.3
اضرب في .
خطوة 4.20.4.1.1.4.1.4
اضرب في .
خطوة 4.20.4.1.1.4.1.5
اضرب في .
خطوة 4.20.4.1.1.4.2
اطرح من .
خطوة 4.20.4.1.2
جمّع الحدود المتعاكسة في .
انقر لعرض المزيد من الخطوات...
خطوة 4.20.4.1.2.1
اطرح من .
خطوة 4.20.4.1.2.2
أضف و.
خطوة 4.20.4.1.3
أضف و.
خطوة 4.20.4.1.4
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
انقر لعرض المزيد من الخطوات...
خطوة 4.20.4.1.4.1
طبّق خاصية التوزيع.
خطوة 4.20.4.1.4.2
طبّق خاصية التوزيع.
خطوة 4.20.4.1.4.3
طبّق خاصية التوزيع.
خطوة 4.20.4.1.5
بسّط ووحّد الحدود المتشابهة.
انقر لعرض المزيد من الخطوات...
خطوة 4.20.4.1.5.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 4.20.4.1.5.1.1
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 4.20.4.1.5.1.2
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 4.20.4.1.5.1.2.1
انقُل .
خطوة 4.20.4.1.5.1.2.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 4.20.4.1.5.1.2.3
أضف و.
خطوة 4.20.4.1.5.1.3
انقُل إلى يسار .
خطوة 4.20.4.1.5.1.4
أعِد كتابة بالصيغة .
خطوة 4.20.4.1.5.1.5
اضرب في .
خطوة 4.20.4.1.5.1.6
اضرب في .
خطوة 4.20.4.1.5.2
أضف و.
خطوة 4.20.4.1.6
طبّق خاصية التوزيع.
خطوة 4.20.4.1.7
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 4.20.4.1.7.1
اضرب في .
خطوة 4.20.4.1.7.2
اضرب في .
خطوة 4.20.4.1.7.3
اضرب في .
خطوة 4.20.4.1.8
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 4.20.4.1.8.1
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 4.20.4.1.8.1.1
انقُل .
خطوة 4.20.4.1.8.1.2
اضرب في .
انقر لعرض المزيد من الخطوات...
خطوة 4.20.4.1.8.1.2.1
ارفع إلى القوة .
خطوة 4.20.4.1.8.1.2.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 4.20.4.1.8.1.3
أضف و.
خطوة 4.20.4.1.8.2
اضرب في .
خطوة 4.20.4.1.9
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
انقر لعرض المزيد من الخطوات...
خطوة 4.20.4.1.9.1
طبّق خاصية التوزيع.
خطوة 4.20.4.1.9.2
طبّق خاصية التوزيع.
خطوة 4.20.4.1.9.3
طبّق خاصية التوزيع.
خطوة 4.20.4.1.10
بسّط ووحّد الحدود المتشابهة.
انقر لعرض المزيد من الخطوات...
خطوة 4.20.4.1.10.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 4.20.4.1.10.1.1
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 4.20.4.1.10.1.1.1
انقُل .
خطوة 4.20.4.1.10.1.1.2
اضرب في .
انقر لعرض المزيد من الخطوات...
خطوة 4.20.4.1.10.1.1.2.1
ارفع إلى القوة .
خطوة 4.20.4.1.10.1.1.2.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 4.20.4.1.10.1.1.3
أضف و.
خطوة 4.20.4.1.10.1.2
اضرب في .
خطوة 4.20.4.1.10.1.3
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 4.20.4.1.10.1.3.1
انقُل .
خطوة 4.20.4.1.10.1.3.2
اضرب في .
انقر لعرض المزيد من الخطوات...
خطوة 4.20.4.1.10.1.3.2.1
ارفع إلى القوة .
خطوة 4.20.4.1.10.1.3.2.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 4.20.4.1.10.1.3.3
أضف و.
خطوة 4.20.4.1.10.1.4
اضرب في .
خطوة 4.20.4.1.10.2
اطرح من .
خطوة 4.20.4.1.10.3
أضف و.
خطوة 4.20.4.1.11
طبّق خاصية التوزيع.
خطوة 4.20.4.1.12
اضرب في .
خطوة 4.20.4.1.13
اضرب في .
خطوة 4.20.4.2
اطرح من .
خطوة 4.20.4.3
أضف و.
خطوة 4.20.5
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 4.20.5.1
أخرِج العامل من .
خطوة 4.20.5.2
أخرِج العامل من .
خطوة 4.20.5.3
أخرِج العامل من .
خطوة 4.20.5.4
أخرِج العامل من .
خطوة 4.20.5.5
أخرِج العامل من .
خطوة 4.20.6
أخرِج العامل من .
خطوة 4.20.7
أخرِج العامل من .
خطوة 4.20.8
أخرِج العامل من .
خطوة 4.20.9
أعِد كتابة بالصيغة .
خطوة 4.20.10
أخرِج العامل من .
خطوة 4.20.11
أعِد كتابة بالصيغة .
خطوة 4.20.12
انقُل السالب أمام الكسر.
خطوة 5
المشتق الرابع لـ بالنسبة إلى هو .