حساب التفاضل والتكامل الأمثلة

خطوة 1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 3
مشتق بالنسبة إلى يساوي .
خطوة 4
ارفع إلى القوة .
خطوة 5
ارفع إلى القوة .
خطوة 6
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 7
أضف و.
خطوة 8
مشتق بالنسبة إلى يساوي .
خطوة 9
ارفع إلى القوة .
خطوة 10
ارفع إلى القوة .
خطوة 11
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 12
أضف و.
خطوة 13
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 13.1
طبّق خاصية التوزيع.
خطوة 13.2
اضرب في .
خطوة 13.3
أعِد كتابة بالصيغة .
خطوة 13.4
أعِد كتابة بالصيغة .
خطوة 13.5
أعِد ترتيب و.
خطوة 13.6
بما أن كلا الحدّين هما مربعان كاملان، حلّل إلى عوامل باستخدام قاعدة الفرق بين مربعين، حيث و.
خطوة 13.7
اضرب في .
خطوة 13.8
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
انقر لعرض المزيد من الخطوات...
خطوة 13.8.1
طبّق خاصية التوزيع.
خطوة 13.8.2
طبّق خاصية التوزيع.
خطوة 13.8.3
طبّق خاصية التوزيع.
خطوة 13.9
جمّع الحدود المتعاكسة في .
انقر لعرض المزيد من الخطوات...
خطوة 13.9.1
أعِد ترتيب العوامل في الحدين و.
خطوة 13.9.2
أضف و.
خطوة 13.9.3
أضف و.
خطوة 13.10
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 13.10.1
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 13.10.1.1
اضرب في .
خطوة 13.10.1.2
ارفع إلى القوة .
خطوة 13.10.1.3
ارفع إلى القوة .
خطوة 13.10.1.4
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 13.10.1.5
أضف و.
خطوة 13.10.2
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 13.10.2.1
اضرب في .
خطوة 13.10.2.2
ارفع إلى القوة .
خطوة 13.10.2.3
ارفع إلى القوة .
خطوة 13.10.2.4
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 13.10.2.5
أضف و.