حساب التفاضل والتكامل الأمثلة

الرسم البياني اللوغاريتم الطبيعي لـ (x)^3
خطوة 1
أوجِد خطوط التقارب.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
عيّن قيمة المتغير المستقل للوغاريتم بحيث تصبح مساوية للصفر.
خطوة 1.2
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 1.2.2
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.2.1
أعِد كتابة بالصيغة .
خطوة 1.2.2.2
أخرِج الحدود من تحت الجذر، بافتراض أنها أعداد حقيقية.
خطوة 1.3
يقع خط التقارب الرأسي عند .
خط التقارب الرأسي:
خط التقارب الرأسي:
خطوة 2
أوجِد النقطة في .
انقر لعرض المزيد من الخطوات...
خطوة 2.1
استبدِل المتغير بـ في العبارة.
خطوة 2.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 2.2.2
اللوغاريتم الطبيعي لـ يساوي .
خطوة 2.2.3
الإجابة النهائية هي .
خطوة 2.3
حوّل إلى رقم عشري.
خطوة 3
أوجِد النقطة في .
انقر لعرض المزيد من الخطوات...
خطوة 3.1
استبدِل المتغير بـ في العبارة.
خطوة 3.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1
ارفع إلى القوة .
خطوة 3.2.2
الإجابة النهائية هي .
خطوة 3.3
حوّل إلى رقم عشري.
خطوة 4
أوجِد النقطة في .
انقر لعرض المزيد من الخطوات...
خطوة 4.1
استبدِل المتغير بـ في العبارة.
خطوة 4.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1
ارفع إلى القوة .
خطوة 4.2.2
الإجابة النهائية هي .
خطوة 4.3
حوّل إلى رقم عشري.
خطوة 5
يمكن تمثيل دالة اللوغاريتم بيانيًا باستخدام خط التقارب الرأسي عند والنقاط .
خط التقارب الرأسي:
خطوة 6