حساب التفاضل والتكامل الأمثلة

أوجد خط المماس عند نقطة y=16 الجذر التربيعي لـ x , (16,64)
,
خطوة 1
أوجِد المشتق الأول واحسِب القيمة عند و لإيجاد ميل خط المماس.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
استخدِم لكتابة في صورة .
خطوة 1.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.4
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 1.5
اجمع و.
خطوة 1.6
اجمع البسوط على القاسم المشترك.
خطوة 1.7
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 1.7.1
اضرب في .
خطوة 1.7.2
اطرح من .
خطوة 1.8
انقُل السالب أمام الكسر.
خطوة 1.9
اجمع و.
خطوة 1.10
اجمع و.
خطوة 1.11
انقُل إلى القاسم باستخدام قاعدة الأُسس السالبة .
خطوة 1.12
أخرِج العامل من .
خطوة 1.13
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 1.13.1
أخرِج العامل من .
خطوة 1.13.2
ألغِ العامل المشترك.
خطوة 1.13.3
أعِد كتابة العبارة.
خطوة 1.14
احسِب قيمة المشتق في .
خطوة 1.15
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.15.1
بسّط القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 1.15.1.1
أعِد كتابة بالصيغة .
خطوة 1.15.1.2
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 1.15.1.3
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.15.1.3.1
ألغِ العامل المشترك.
خطوة 1.15.1.3.2
أعِد كتابة العبارة.
خطوة 1.15.1.4
احسِب قيمة الأُس.
خطوة 1.15.2
اقسِم على .
خطوة 2
عوّض بقيمتَي الميل والنقطة في قاعدة ميل النقطة وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.1
استخدِم الميل ونقطة مُعطاة للتعويض بقيمتَي و في شكل ميل النقطة ، المشتق من معادلة الميل .
خطوة 2.2
بسّط المعادلة واتركها بِشكل ميل النقطة.
خطوة 2.3
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1.1
أعِد الكتابة.
خطوة 2.3.1.2
بسّط بجمع الأصفار.
خطوة 2.3.1.3
طبّق خاصية التوزيع.
خطوة 2.3.1.4
اضرب في .
خطوة 2.3.2
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.2.1
أضف إلى كلا المتعادلين.
خطوة 2.3.2.2
أضف و.
خطوة 3