إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 1.1.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 1.1.2
مشتق بالنسبة إلى يساوي .
خطوة 1.1.3
استبدِل كافة حالات حدوث بـ .
خطوة 1.2
أوجِد المشتقة.
خطوة 1.2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.2.3
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.2.4
اجمع الكسور.
خطوة 1.2.4.1
أضف و.
خطوة 1.2.4.2
اجمع و.
خطوة 1.2.4.3
اجمع و.
خطوة 2
خطوة 2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.2
أوجِد المشتقة باستخدام قاعدة القسمة التي تنص على أن هو حيث و.
خطوة 2.3
أوجِد المشتقة.
خطوة 2.3.1
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.2
انقُل إلى يسار .
خطوة 2.3.3
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.5
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.6
بسّط العبارة.
خطوة 2.3.6.1
أضف و.
خطوة 2.3.6.2
اضرب في .
خطوة 2.4
اضرب في بجمع الأُسس.
خطوة 2.4.1
انقُل .
خطوة 2.4.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 2.4.3
أضف و.
خطوة 2.5
اجمع و.
خطوة 2.6
بسّط.
خطوة 2.6.1
طبّق خاصية التوزيع.
خطوة 2.6.2
طبّق خاصية التوزيع.
خطوة 2.6.3
طبّق خاصية التوزيع.
خطوة 2.6.4
بسّط بَسْط الكسر.
خطوة 2.6.4.1
بسّط كل حد.
خطوة 2.6.4.1.1
اضرب في بجمع الأُسس.
خطوة 2.6.4.1.1.1
انقُل .
خطوة 2.6.4.1.1.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 2.6.4.1.1.3
أضف و.
خطوة 2.6.4.1.2
اضرب في .
خطوة 2.6.4.1.3
اضرب في .
خطوة 2.6.4.1.4
اضرب في .
خطوة 2.6.4.1.5
اضرب في .
خطوة 2.6.4.2
اطرح من .
خطوة 3
لإيجاد قيم الحد الأقصى المحلي والحد الأدنى المحلي للدالة، عيّن قيمة المشتق لتصبح مساوية لـ وأوجِد الحل.
خطوة 4
خطوة 4.1
أوجِد المشتق الأول.
خطوة 4.1.1
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 4.1.1.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 4.1.1.2
مشتق بالنسبة إلى يساوي .
خطوة 4.1.1.3
استبدِل كافة حالات حدوث بـ .
خطوة 4.1.2
أوجِد المشتقة.
خطوة 4.1.2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 4.1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.1.2.3
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 4.1.2.4
اجمع الكسور.
خطوة 4.1.2.4.1
أضف و.
خطوة 4.1.2.4.2
اجمع و.
خطوة 4.1.2.4.3
اجمع و.
خطوة 4.2
المشتق الأول لـ بالنسبة إلى هو .
خطوة 5
خطوة 5.1
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ .
خطوة 5.2
عيّن قيمة بسط الكسر بحيث تصبح مساوية لصفر.
خطوة 5.3
أوجِد قيمة في المعادلة.
خطوة 5.3.1
اقسِم كل حد في على وبسّط.
خطوة 5.3.1.1
اقسِم كل حد في على .
خطوة 5.3.1.2
بسّط الطرف الأيسر.
خطوة 5.3.1.2.1
ألغِ العامل المشترك لـ .
خطوة 5.3.1.2.1.1
ألغِ العامل المشترك.
خطوة 5.3.1.2.1.2
اقسِم على .
خطوة 5.3.1.3
بسّط الطرف الأيمن.
خطوة 5.3.1.3.1
اقسِم على .
خطوة 5.3.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
خطوة 5.3.3
بسّط .
خطوة 5.3.3.1
أعِد كتابة بالصيغة .
خطوة 5.3.3.2
أخرِج الحدود من تحت الجذر، بافتراض أنها أعداد حقيقية.
خطوة 6
خطوة 6.1
نطاق العبارة هو جميع الأعداد الحقيقية ما عدا ما يجعل العبارة غير معرّفة. في هذه الحالة، لا يوجد عدد حقيقي يجعل العبارة غير معرّفة.
خطوة 7
النقاط الحرجة اللازم حساب قيمتها.
خطوة 8
احسِب قيمة المشتق الثاني في . إذا كان المشتق الثاني موجبًا، فإنه إذن الحد الأدنى المحلي. أما إذا كان سالبًا، فإنه إذن الحد الأقصى المحلي.
خطوة 9
خطوة 9.1
بسّط بَسْط الكسر.
خطوة 9.1.1
ينتج عن رفع إلى أي قوة موجبة.
خطوة 9.1.2
اضرب في .
خطوة 9.1.3
ينتج عن رفع إلى أي قوة موجبة.
خطوة 9.1.4
اضرب في .
خطوة 9.1.5
أضف و.
خطوة 9.2
بسّط القاسم.
خطوة 9.2.1
ينتج عن رفع إلى أي قوة موجبة.
خطوة 9.2.2
أضف و.
خطوة 9.2.3
ارفع إلى القوة .
خطوة 9.3
اقسِم على .
خطوة 10
خطوة 10.1
قسّم إلى فترات منفصلة حول قيم التي تجعل المشتق الأول مساويًا لـ أو غير معرّف.
خطوة 10.2
عوّض بأي عدد، مثل ، من الفترة في المشتق الأول للتحقق مما إذا كانت النتيجة سالبة أم موجبة.
خطوة 10.2.1
استبدِل المتغير بـ في العبارة.
خطوة 10.2.2
بسّط النتيجة.
خطوة 10.2.2.1
ارفع إلى القوة .
خطوة 10.2.2.2
بسّط القاسم.
خطوة 10.2.2.2.1
ارفع إلى القوة .
خطوة 10.2.2.2.2
أضف و.
خطوة 10.2.2.3
بسّط العبارة.
خطوة 10.2.2.3.1
اضرب في .
خطوة 10.2.2.3.2
انقُل السالب أمام الكسر.
خطوة 10.2.2.4
الإجابة النهائية هي .
خطوة 10.3
عوّض بأي عدد، مثل ، من الفترة في المشتق الأول للتحقق مما إذا كانت النتيجة سالبة أم موجبة.
خطوة 10.3.1
استبدِل المتغير بـ في العبارة.
خطوة 10.3.2
بسّط النتيجة.
خطوة 10.3.2.1
بسّط بَسْط الكسر.
خطوة 10.3.2.1.1
أعِد كتابة بالصيغة .
خطوة 10.3.2.1.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 10.3.2.1.3
أضف و.
خطوة 10.3.2.2
بسّط القاسم.
خطوة 10.3.2.2.1
ارفع إلى القوة .
خطوة 10.3.2.2.2
أضف و.
خطوة 10.3.2.3
ارفع إلى القوة .
خطوة 10.3.2.4
الإجابة النهائية هي .
خطوة 10.4
بما أن علامة المشتق الأول تغيّرت من سالب إلى موجب حول ، إذن تمثل حدًا أدنى محليًا.
هي حد أدنى محلي
هي حد أدنى محلي
خطوة 11