حساب التفاضل والتكامل الأمثلة

استخدم تعريف النهاية لإيجاد المشتق e^x
خطوة 1
ضع في اعتبارك تعريف الحد للمشتق.
خطوة 2
أوجِد مكونات التعريف.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
احسِب قيمة الدالة في .
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1
استبدِل المتغير بـ في العبارة.
خطوة 2.1.2
الإجابة النهائية هي .
خطوة 2.2
أوجِد مكونات التعريف.
خطوة 3
عوّض بالمكونات.
خطوة 4
اضرب في .
خطوة 5
طبّق قاعدة لوبيتال.
انقر لعرض المزيد من الخطوات...
خطوة 5.1
احسِب قيمة حد بسط الكسر وحد القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 5.1.1
خُذ نهاية بسط الكسر ونهاية القاسم.
خطوة 5.1.2
احسِب قيمة حد بسط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 5.1.2.1
احسِب قيمة النهاية.
انقر لعرض المزيد من الخطوات...
خطوة 5.1.2.1.1
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 5.1.2.1.2
انقُل النهاية إلى الأُس.
خطوة 5.1.2.1.3
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 5.1.2.1.4
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 5.1.2.1.5
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 5.1.2.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 5.1.2.3
جمّع الحدود المتعاكسة في .
انقر لعرض المزيد من الخطوات...
خطوة 5.1.2.3.1
أضف و.
خطوة 5.1.2.3.2
اطرح من .
خطوة 5.1.3
احسِب قيمة حد بالتعويض عن بـ .
خطوة 5.1.4
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 5.2
بما أن مكتوبة بصيغة غير معيّنة، طبّق قاعدة لوبيتال. تنص قاعدة لوبيتال على أن نهاية ناتج قسمة الدوال يساوي نهاية ناتج قسمة مشتقاتها.
خطوة 5.3
أوجِد مشتق بسط الكسر والقاسم.
انقر لعرض المزيد من الخطوات...
خطوة 5.3.1
أوجِد مشتقة البسط والقاسم.
خطوة 5.3.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 5.3.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 5.3.3.1
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 5.3.3.1.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 5.3.3.1.2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 5.3.3.1.3
استبدِل كافة حالات حدوث بـ .
خطوة 5.3.3.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 5.3.3.3
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 5.3.3.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 5.3.3.5
أضف و.
خطوة 5.3.3.6
اضرب في .
خطوة 5.3.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 5.3.5
أضف و.
خطوة 5.3.6
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 5.4
اقسِم على .
خطوة 6
احسِب قيمة النهاية.
انقر لعرض المزيد من الخطوات...
خطوة 6.1
انقُل النهاية إلى الأُس.
خطوة 6.2
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 6.3
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 7
احسِب قيمة حد بالتعويض عن بـ .
خطوة 8
أضف و.
خطوة 9