حساب التفاضل والتكامل الأمثلة

أوجد نقاط الانعطاف y=x^3-3x^2-105x
خطوة 1
اكتب في صورة دالة.
خطوة 2
أوجِد المشتق الثاني.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.1.1.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.1.2
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.1.2.3
اضرب في .
خطوة 2.1.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.1.3.3
اضرب في .
خطوة 2.2
أوجِد المشتق الثاني.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.2.2
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.2.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.2.2.3
اضرب في .
خطوة 2.2.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.2.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.2.3.3
اضرب في .
خطوة 2.2.4
أوجِد المشتقة باستخدام قاعدة الدالة الثابتة.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.4.1
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.2.4.2
أضف و.
خطوة 2.3
المشتق الثاني لـ بالنسبة إلى هو .
خطوة 3
عيّن قيمة المشتق الثاني بحيث تصبح مساوية لـ ثم حل المعادلة .
انقر لعرض المزيد من الخطوات...
خطوة 3.1
عيّن قيمة المشتق الثاني بحيث تصبح مساوية لـ .
خطوة 3.2
أضف إلى كلا المتعادلين.
خطوة 3.3
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1
اقسِم كل حد في على .
خطوة 3.3.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.3.2.1.1
ألغِ العامل المشترك.
خطوة 3.3.2.1.2
اقسِم على .
خطوة 3.3.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.3.1
اقسِم على .
خطوة 4
أوجِد النقاط التي يكون فيها المشتق الثاني هو .
انقر لعرض المزيد من الخطوات...
خطوة 4.1
عوّض بقيمة في لإيجاد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 4.1.1
استبدِل المتغير بـ في العبارة.
خطوة 4.1.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.2.1.1
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 4.1.2.1.2
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 4.1.2.1.3
اضرب في .
خطوة 4.1.2.1.4
اضرب في .
خطوة 4.1.2.2
بسّط بطرح الأعداد.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.2.2.1
اطرح من .
خطوة 4.1.2.2.2
اطرح من .
خطوة 4.1.2.3
الإجابة النهائية هي .
خطوة 4.2
النقطة التي تم إيجادها بالتعويض بـ في هي . ويمكن أن تكون هذه النقطة نقطة انقلاب.
خطوة 5
قسّم إلى فترات حول النقاط التي من المحتمل أن تكون نقاط انقلاب.
خطوة 6
عوّض بقيمة من الفترة في المشتق الثاني لتحديد ما إذا كان يتزايد أم يتناقص.
انقر لعرض المزيد من الخطوات...
خطوة 6.1
استبدِل المتغير بـ في العبارة.
خطوة 6.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.1
اضرب في .
خطوة 6.2.2
اطرح من .
خطوة 6.2.3
الإجابة النهائية هي .
خطوة 6.3
المشتق الثاني عند يساوي . وبما أنه سالب، فإن المشتق الثاني يتناقص خلال الفترة
تناقص خلال حيث إن
تناقص خلال حيث إن
خطوة 7
عوّض بقيمة من الفترة في المشتق الثاني لتحديد ما إذا كان يتزايد أم يتناقص.
انقر لعرض المزيد من الخطوات...
خطوة 7.1
استبدِل المتغير بـ في العبارة.
خطوة 7.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 7.2.1
اضرب في .
خطوة 7.2.2
اطرح من .
خطوة 7.2.3
الإجابة النهائية هي .
خطوة 7.3
في ، المشتق الثاني هو . نظرًا إلى أن هذا موجب، فإن المشتق الثاني يتزايد على مدى الفترة .
تزايد خلال نظرًا إلى أن
تزايد خلال نظرًا إلى أن
خطوة 8
نقطة الانقلاب هي نقطة على منحنى يغيّر التقعر عندها العلامة من موجب إلى سالب أو من سالب إلى موجب. نقطة الانقلاب في هذه الحالة هي .
خطوة 9