إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
أوجِد المشتقة باستخدام قاعدة القسمة التي تنص على أن هو حيث و.
خطوة 2
خطوة 2.1
اضرب الأُسس في .
خطوة 2.1.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 2.1.2
اضرب في .
خطوة 2.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.4
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.5
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.6
اضرب في .
خطوة 2.7
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.8
أضف و.
خطوة 2.9
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.10
بسّط بالتحليل إلى عوامل.
خطوة 2.10.1
اضرب في .
خطوة 2.10.2
أخرِج العامل من .
خطوة 2.10.2.1
أخرِج العامل من .
خطوة 2.10.2.2
أخرِج العامل من .
خطوة 2.10.2.3
أخرِج العامل من .
خطوة 3
خطوة 3.1
أخرِج العامل من .
خطوة 3.2
ألغِ العامل المشترك.
خطوة 3.3
أعِد كتابة العبارة.
خطوة 4
خطوة 4.1
طبّق خاصية التوزيع.
خطوة 4.2
طبّق خاصية التوزيع.
خطوة 4.3
بسّط بَسْط الكسر.
خطوة 4.3.1
بسّط كل حد.
خطوة 4.3.1.1
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 4.3.1.2
اضرب في بجمع الأُسس.
خطوة 4.3.1.2.1
انقُل .
خطوة 4.3.1.2.2
اضرب في .
خطوة 4.3.1.2.2.1
ارفع إلى القوة .
خطوة 4.3.1.2.2.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 4.3.1.2.3
أضف و.
خطوة 4.3.1.3
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 4.3.1.4
اضرب في بجمع الأُسس.
خطوة 4.3.1.4.1
انقُل .
خطوة 4.3.1.4.2
اضرب في .
خطوة 4.3.1.5
اضرب في .
خطوة 4.3.1.6
اضرب في .
خطوة 4.3.2
جمّع الحدود المتعاكسة في .
خطوة 4.3.2.1
أضف و.
خطوة 4.3.2.2
أضف و.
خطوة 4.3.3
اطرح من .
خطوة 4.4
بسّط بَسْط الكسر.
خطوة 4.4.1
أعِد كتابة بالصيغة .
خطوة 4.4.2
بما أن كلا الحدّين هما مكعبان كاملان، حلّل إلى عوامل باستخدام قاعدة الفرق بين مكعبين، حيث و.
خطوة 4.4.3
بسّط.
خطوة 4.4.3.1
انقُل إلى يسار .
خطوة 4.4.3.2
ارفع إلى القوة .