إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2
خطوة 2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.2
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 2.3
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 2.3.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.3.2
مشتق بالنسبة إلى يساوي .
خطوة 2.3.3
استبدِل كافة حالات حدوث بـ .
خطوة 2.4
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.5
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.6
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.7
اضرب في .
خطوة 2.8
اجمع و.
خطوة 2.9
ألغِ العامل المشترك لـ .
خطوة 2.9.1
ألغِ العامل المشترك.
خطوة 2.9.2
أعِد كتابة العبارة.
خطوة 2.10
اجمع و.
خطوة 2.11
ألغِ العامل المشترك لـ .
خطوة 2.11.1
ألغِ العامل المشترك.
خطوة 2.11.2
أعِد كتابة العبارة.
خطوة 2.12
اضرب في .
خطوة 3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4
خطوة 4.1
طبّق خاصية التوزيع.
خطوة 4.2
جمّع الحدود.
خطوة 4.2.1
اضرب في .
خطوة 4.2.2
أضف و.