حساب التفاضل والتكامل الأمثلة

خطوة 1
استخدِم خصائص اللوغاريتمات لتبسيط الاشتقاق.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أعِد كتابة بالصيغة .
خطوة 1.2
وسّع بنقل خارج اللوغاريتم.
خطوة 2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 2.3
استبدِل كافة حالات حدوث بـ .
خطوة 3
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 4
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 4.2
مشتق بالنسبة إلى يساوي .
خطوة 4.3
استبدِل كافة حالات حدوث بـ .
خطوة 5
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 5.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 5.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 5.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 5.4
اضرب في .
خطوة 5.5
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 5.6
اجمع الكسور.
انقر لعرض المزيد من الخطوات...
خطوة 5.6.1
أضف و.
خطوة 5.6.2
اجمع و.
خطوة 5.7
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 5.8
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 5.9
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 5.10
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 5.10.1
أضف و.
خطوة 5.10.2
اضرب في .