إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 1.2
مشتق بالنسبة إلى يساوي .
خطوة 1.3
أوجِد المشتقة باستخدام قاعدة القوة.
خطوة 1.3.1
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.2
اضرب في .
خطوة 2
خطوة 2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.2
احسِب قيمة .
خطوة 2.2.1
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 2.2.2
مشتق بالنسبة إلى يساوي .
خطوة 2.2.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.2.4
اضرب في .
خطوة 2.3
مشتق بالنسبة إلى يساوي .
خطوة 2.4
بسّط.
خطوة 2.4.1
أضف و.
خطوة 2.4.2
أعِد ترتيب الحدود.
خطوة 3
خطوة 3.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.2
احسِب قيمة .
خطوة 3.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.2.2
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 3.2.3
مشتق بالنسبة إلى يساوي .
خطوة 3.2.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.2.5
اضرب في .
خطوة 3.3
احسِب قيمة .
خطوة 3.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.3.2
مشتق بالنسبة إلى يساوي .
خطوة 3.3.3
اضرب في .
خطوة 3.4
بسّط.
خطوة 3.4.1
طبّق خاصية التوزيع.
خطوة 3.4.2
اطرح من .
خطوة 4
خطوة 4.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 4.2
احسِب قيمة .
خطوة 4.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 4.2.2
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 4.2.3
مشتق بالنسبة إلى يساوي .
خطوة 4.2.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.2.5
اضرب في .
خطوة 4.3
احسِب قيمة .
خطوة 4.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 4.3.2
مشتق بالنسبة إلى يساوي .
خطوة 4.4
بسّط.
خطوة 4.4.1
طبّق خاصية التوزيع.
خطوة 4.4.2
جمّع الحدود.
خطوة 4.4.2.1
اضرب في .
خطوة 4.4.2.2
اضرب في .
خطوة 4.4.2.3
اطرح من .
خطوة 5
المشتق الرابع لـ بالنسبة إلى هو .