حساب التفاضل والتكامل الأمثلة

خطوة 1
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3
استبدِل كافة حالات حدوث بـ .
خطوة 3
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.3
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 3.4
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 3.4.1
أضف و.
خطوة 3.4.2
اضرب في .
خطوة 3.5
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.6
انقُل إلى يسار .
خطوة 4
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 4.1.1
أخرِج العامل من .
خطوة 4.1.2
أخرِج العامل من .
خطوة 4.1.3
أخرِج العامل من .
خطوة 4.2
جمّع الحدود.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1
انقُل إلى يسار .
خطوة 4.2.2
انقُل إلى يسار .
خطوة 4.2.3
أضف و.