إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
احسِب قيمة حد بسط الكسر وحد القاسم.
خطوة 1.1.1
خُذ نهاية بسط الكسر ونهاية القاسم.
خطوة 1.1.2
احسِب قيمة حد بسط الكسر.
خطوة 1.1.2.1
انقُل النهاية داخل الدالة المثلثية نظرًا إلى أن دالة الجيب متصلة.
خطوة 1.1.2.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 1.1.2.3
القيمة الدقيقة لـ هي .
خطوة 1.1.3
احسِب قيمة حد القاسم.
خطوة 1.1.3.1
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 1.1.3.2
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 1.1.3.3
انقُل الأُس من خارج النهاية باستخدام قاعدة القوة للنهايات.
خطوة 1.1.3.4
احسِب قيم الحدود بالتعويض عن جميع حالات حدوث بـ .
خطوة 1.1.3.4.1
احسِب قيمة حد بالتعويض عن بـ .
خطوة 1.1.3.4.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 1.1.3.5
بسّط الإجابة.
خطوة 1.1.3.5.1
بسّط كل حد.
خطوة 1.1.3.5.1.1
ينتج عن رفع إلى أي قوة موجبة.
خطوة 1.1.3.5.1.2
اضرب في .
خطوة 1.1.3.5.2
أضف و.
خطوة 1.1.3.5.3
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 1.1.3.6
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 1.1.4
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 1.2
بما أن مكتوبة بصيغة غير معيّنة، طبّق قاعدة لوبيتال. تنص قاعدة لوبيتال على أن نهاية ناتج قسمة الدوال يساوي نهاية ناتج قسمة مشتقاتها.
خطوة 1.3
أوجِد مشتق بسط الكسر والقاسم.
خطوة 1.3.1
أوجِد مشتقة البسط والقاسم.
خطوة 1.3.2
مشتق بالنسبة إلى يساوي .
خطوة 1.3.3
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.3.4
احسِب قيمة .
خطوة 1.3.4.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.3.4.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.4.3
اضرب في .
خطوة 1.3.5
احسِب قيمة .
خطوة 1.3.5.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.3.5.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.5.3
اضرب في .
خطوة 2
خطوة 2.1
قسّم النهاية بتطبيق قاعدة قسمة النهايات على النهاية بينما يقترب من .
خطوة 2.2
انقُل النهاية داخل الدالة المثلثية نظرًا إلى أن دالة جيب التمام متصلة.
خطوة 2.3
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 2.4
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 2.5
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 3
خطوة 3.1
احسِب قيمة حد بالتعويض عن بـ .
خطوة 3.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 4
خطوة 4.1
القيمة الدقيقة لـ هي .
خطوة 4.2
بسّط القاسم.
خطوة 4.2.1
اضرب في .
خطوة 4.2.2
اضرب في .
خطوة 4.2.3
اطرح من .
خطوة 4.3
اقسِم على .