حساب التفاضل والتكامل الأمثلة

Hallar la derivada- d/dx اللوغاريتم الطبيعي لـ (x+1)/(x-1)
خطوة 1
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 1.2
مشتق بالنسبة إلى يساوي .
خطوة 1.3
استبدِل كافة حالات حدوث بـ .
خطوة 2
اضرب في مقلوب الكسر للقسمة على .
خطوة 3
اضرب في .
خطوة 4
أوجِد المشتقة باستخدام قاعدة القسمة التي تنص على أن هو حيث و.
خطوة 5
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 5.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 5.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 5.3
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 5.4
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 5.4.1
أضف و.
خطوة 5.4.2
اضرب في .
خطوة 5.5
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 5.6
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 5.7
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 5.8
اجمع الكسور.
انقر لعرض المزيد من الخطوات...
خطوة 5.8.1
أضف و.
خطوة 5.8.2
اضرب في .
خطوة 5.8.3
اضرب في .
خطوة 6
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 6.1
أخرِج العامل من .
خطوة 6.2
ألغِ العامل المشترك.
خطوة 6.3
أعِد كتابة العبارة.
خطوة 7
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 7.1
طبّق خاصية التوزيع.
خطوة 7.2
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 7.2.1
جمّع الحدود المتعاكسة في .
انقر لعرض المزيد من الخطوات...
خطوة 7.2.1.1
اطرح من .
خطوة 7.2.1.2
اطرح من .
خطوة 7.2.2
اضرب في .
خطوة 7.2.3
اطرح من .
خطوة 7.3
انقُل السالب أمام الكسر.