إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
عيّن قيمة المتغير المستقل في بحيث تصبح أكبر من لإيجاد الموضع الذي تكون فيه العبارة معرّفة.
خطوة 1.2
أوجِد قيمة .
خطوة 1.2.1
لحذف الجذر في الطرف الأيسر للمتباينة، ربّع كلا طرفي المتباينة.
خطوة 1.2.2
بسّط كل طرف من طرفي المتباينة.
خطوة 1.2.2.1
استخدِم لكتابة في صورة .
خطوة 1.2.2.2
بسّط الطرف الأيسر.
خطوة 1.2.2.2.1
بسّط .
خطوة 1.2.2.2.1.1
اضرب الأُسس في .
خطوة 1.2.2.2.1.1.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 1.2.2.2.1.1.2
ألغِ العامل المشترك لـ .
خطوة 1.2.2.2.1.1.2.1
ألغِ العامل المشترك.
خطوة 1.2.2.2.1.1.2.2
أعِد كتابة العبارة.
خطوة 1.2.2.2.1.2
بسّط.
خطوة 1.2.2.3
بسّط الطرف الأيمن.
خطوة 1.2.2.3.1
ينتج عن رفع إلى أي قوة موجبة.
خطوة 1.2.3
أوجِد نطاق .
خطوة 1.2.3.1
عيّن قيمة المجذور في بحيث تصبح أكبر من أو تساوي لإيجاد الموضع الذي تكون فيه العبارة معرّفة.
خطوة 1.2.3.2
النطاق هو جميع قيم التي تجعل العبارة معرّفة.
خطوة 1.2.4
يتكون الحل من جميع الفترات الصحيحة.
خطوة 1.3
عيّن قيمة المجذور في بحيث تصبح أكبر من أو تساوي لإيجاد الموضع الذي تكون فيه العبارة معرّفة.
خطوة 1.4
النطاق هو جميع قيم التي تجعل العبارة معرّفة.
ترميز الفترة:
ترميز بناء المجموعات:
ترميز الفترة:
ترميز بناء المجموعات:
خطوة 2
خطوة 2.1
استبدِل المتغير بـ في العبارة.
خطوة 2.2
احذِف الأقواس.
خطوة 2.3
أعِد كتابة بالصيغة .
خطوة 2.4
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
خطوة 2.5
اللوغاريتم الطبيعي للصفر يساوي قيمة غير معرّفة.
غير معرّف
خطوة 3
نقطة نهاية العبارة الجذرية هي .
خطوة 4
خطوة 4.1
عوّض بقيمة التي تساوي في . في هذه الحالة، النقطة هي .
خطوة 4.1.1
استبدِل المتغير بـ في العبارة.
خطوة 4.1.2
بسّط النتيجة.
خطوة 4.1.2.1
احذِف الأقواس.
خطوة 4.1.2.2
أي جذر لـ هو .
خطوة 4.1.2.3
اللوغاريتم الطبيعي لـ يساوي .
خطوة 4.1.2.4
الإجابة النهائية هي .
خطوة 4.2
عوّض بقيمة التي تساوي في . في هذه الحالة، النقطة هي .
خطوة 4.2.1
استبدِل المتغير بـ في العبارة.
خطوة 4.2.2
بسّط النتيجة.
خطوة 4.2.2.1
احذِف الأقواس.
خطوة 4.2.2.2
الإجابة النهائية هي .
خطوة 4.3
يمكن تمثيل الجذر التربيعي بيانيًا باستخدام النقاط الواقعة حول الرأس
خطوة 5