حساب التفاضل والتكامل الأمثلة

Resolver para x x=2 الجذر التربيعي لـ x
خطوة 1
بما أن الجذر يقع على المتعادل الأيمن، بدّل الأطراف بحيث يصبح على المتعادل الأيسر.
خطوة 2
لحذف الجذر في المتعادل الأيسر، ربّع كلا المتعادلين.
خطوة 3
بسّط كل متعادل.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
استخدِم لكتابة في صورة .
خطوة 3.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1.1
طبّق قاعدة الضرب على .
خطوة 3.2.1.2
ارفع إلى القوة .
خطوة 3.2.1.3
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1.3.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 3.2.1.3.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1.3.2.1
ألغِ العامل المشترك.
خطوة 3.2.1.3.2.2
أعِد كتابة العبارة.
خطوة 3.2.1.4
بسّط.
خطوة 4
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 4.1
اطرح من كلا المتعادلين.
خطوة 4.2
حلّل المتعادل الأيسر إلى عوامل.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1
لنفترض أن . استبدِل بجميع حالات حدوث .
خطوة 4.2.2
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.2.1
أخرِج العامل من .
خطوة 4.2.2.2
أخرِج العامل من .
خطوة 4.2.2.3
أخرِج العامل من .
خطوة 4.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 4.3
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 4.4
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 4.5
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 4.5.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 4.5.2
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 4.5.2.1
اطرح من كلا المتعادلين.
خطوة 4.5.2.2
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 4.5.2.2.1
اقسِم كل حد في على .
خطوة 4.5.2.2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 4.5.2.2.2.1
قسمة قيمتين سالبتين على بعضهما البعض ينتج عنها قيمة موجبة.
خطوة 4.5.2.2.2.2
اقسِم على .
خطوة 4.5.2.2.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 4.5.2.2.3.1
اقسِم على .
خطوة 4.6
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.