حساب التفاضل والتكامل الأمثلة

أوجد القيمة المطقة الأكبر والأصغر ضمن المجال g(t)=t/(t-8) on 10 , 12
on ,
خطوة 1
أوجِد النقاط الحرجة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1.1
أوجِد المشتقة باستخدام قاعدة القسمة التي تنص على أن هو حيث و.
خطوة 1.1.1.2
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1.2.1
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.1.2.2
اضرب في .
خطوة 1.1.1.2.3
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.1.2.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.1.2.5
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.1.2.6
بسّط بجمع الحدود.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1.2.6.1
أضف و.
خطوة 1.1.1.2.6.2
اضرب في .
خطوة 1.1.1.2.6.3
اطرح من .
خطوة 1.1.1.2.6.4
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1.2.6.4.1
اطرح من .
خطوة 1.1.1.2.6.4.2
انقُل السالب أمام الكسر.
خطوة 1.1.2
المشتق الأول لـ بالنسبة إلى هو .
خطوة 1.2
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ ثم أوجِد حل المعادلة .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ .
خطوة 1.2.2
عيّن قيمة بسط الكسر بحيث تصبح مساوية لصفر.
خطوة 1.2.3
بما أن ، إذن لا توجد حلول.
لا يوجد حل
لا يوجد حل
خطوة 1.3
أوجِد القيم التي يكون عندها المشتق غير معرّف.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1
عيّن قيمة القاسم في بحيث تصبح مساوية لـ لإيجاد الموضع الذي تكون فيه العبارة غير معرّفة.
خطوة 1.3.2
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.3.2.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 1.3.2.2
أضف إلى كلا المتعادلين.
خطوة 1.4
احسِب قيمة عند كل قيمة يكون عندها المشتق مساويًا لـ أو غير معرّف.
انقر لعرض المزيد من الخطوات...
خطوة 1.4.1
احسِب القيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 1.4.1.1
عوّض بقيمة التي تساوي .
خطوة 1.4.1.2
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.4.1.2.1
اطرح من .
خطوة 1.4.1.2.2
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
غير معرّف
غير معرّف
غير معرّف
خطوة 1.5
لا توجد قيم لـ في نطاق المسألة الأصلية بها المشتق يساوي أو غير معرّف.
لم يتم العثور على نقاط حرجة
لم يتم العثور على نقاط حرجة
خطوة 2
احسِب القيمة عند نقاط النهاية المُضمّنة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
احسِب القيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1
عوّض بقيمة التي تساوي .
خطوة 2.1.2
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.1
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.1.1
أخرِج العامل من .
خطوة 2.1.2.1.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.1.2.1
أخرِج العامل من .
خطوة 2.1.2.1.2.2
أخرِج العامل من .
خطوة 2.1.2.1.2.3
أخرِج العامل من .
خطوة 2.1.2.1.2.4
ألغِ العامل المشترك.
خطوة 2.1.2.1.2.5
أعِد كتابة العبارة.
خطوة 2.1.2.2
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.2.1
اطرح من .
خطوة 2.1.2.2.2
اقسِم على .
خطوة 2.2
احسِب القيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
عوّض بقيمة التي تساوي .
خطوة 2.2.2
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.2.1
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.2.1.1
أخرِج العامل من .
خطوة 2.2.2.1.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.2.1.2.1
أخرِج العامل من .
خطوة 2.2.2.1.2.2
أخرِج العامل من .
خطوة 2.2.2.1.2.3
أخرِج العامل من .
خطوة 2.2.2.1.2.4
ألغِ العامل المشترك.
خطوة 2.2.2.1.2.5
أعِد كتابة العبارة.
خطوة 2.2.2.2
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.2.2.1
اطرح من .
خطوة 2.2.2.2.2
اقسِم على .
خطوة 2.3
اسرِد جميع النقاط.
خطوة 3
قارن قيم الموجودة لكل قيمة من قيم من أجل تحديد الحد الأقصى والحد الأدنى المطلق على مدى الفترة الزمنية المحددة. سيظهر الحد الأقصى بأعلى قيمة وسيظهر الحد الأدنى بأقل قيمة .
الحد الأقصى المطلق:
الحد الأدنى المطلق:
خطوة 4