حساب التفاضل والتكامل الأمثلة

أوجد القيمة المطقة الأكبر والأصغر ضمن المجال 1/x-2/(x^2) , [-2,1]
,
خطوة 1
أوجِد النقاط الحرجة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.1.2
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1.2.1
أعِد كتابة بالصيغة .
خطوة 1.1.1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.1.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.1.3.2
أعِد كتابة بالصيغة .
خطوة 1.1.1.3.3
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1.3.3.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 1.1.1.3.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.1.3.3.3
استبدِل كافة حالات حدوث بـ .
خطوة 1.1.1.3.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.1.3.5
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1.3.5.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 1.1.1.3.5.2
اضرب في .
خطوة 1.1.1.3.6
اضرب في .
خطوة 1.1.1.3.7
ارفع إلى القوة .
خطوة 1.1.1.3.8
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 1.1.1.3.9
اطرح من .
خطوة 1.1.1.3.10
اضرب في .
خطوة 1.1.1.4
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 1.1.1.5
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 1.1.1.6
اجمع و.
خطوة 1.1.2
المشتق الأول لـ بالنسبة إلى هو .
خطوة 1.2
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ ثم أوجِد حل المعادلة .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ .
خطوة 1.2.2
أوجِد القاسم المشترك الأصغر للحدود في المعادلة.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.2.1
يُعد إيجاد القاسم المشترك الأصغر لقائمة القيم بمثابة إيجاد المضاعف المشترك الأصغر لقواسم تلك القيم.
خطوة 1.2.2.2
بما أن تحتوي على أعداد ومتغيرات على حدٍّ سواء، فهناك خطوتان لإيجاد المضاعف المشترك الأصغر. أوجِد المضاعف المشترك الأصغر للجزء العددي ثم أوجِد المضاعف المشترك الأصغر للجزء المتغير.
خطوة 1.2.2.3
المضاعف المشترك الأصغر هو أصغر عدد موجب يمكن قسمته على جميع الأعداد بالتساوي.
1. اكتب قائمة العوامل الأساسية لكل عدد.
2. اضرب كل عامل في أكبر عدد من مرات ظهوره في أي رقم.
خطوة 1.2.2.4
العدد ليس عددًا أوليًا لأن له عامل موجب واحد فقط، وهو العدد نفسه.
ليس أوليًا
خطوة 1.2.2.5
المضاعف المشترك الأصغر لـ هو حاصل ضرب كل العوامل الأساسية في أكبر عدد من المرات التي تظهر فيها في أي من العددين.
خطوة 1.2.2.6
عوامل هي ، والتي تساوي حاصل ضرب في بعضها بمعدل من المرات.
تحدث بمعدل من المرات.
خطوة 1.2.2.7
عوامل هي ، والتي تساوي حاصل ضرب في بعضها بمعدل من المرات.
تحدث بمعدل من المرات.
خطوة 1.2.2.8
المضاعف المشترك الأصغر لـ هو حاصل ضرب كل العوامل الأساسية في أكبر عدد من المرات التي تظهر فيها في أي من الحدين.
خطوة 1.2.2.9
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.2.9.1
اضرب في .
خطوة 1.2.2.9.2
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.2.9.2.1
اضرب في .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.2.9.2.1.1
ارفع إلى القوة .
خطوة 1.2.2.9.2.1.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 1.2.2.9.2.2
أضف و.
خطوة 1.2.3
اضرب كل حد في في لحذف الكسور.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.3.1
اضرب كل حد في في .
خطوة 1.2.3.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.3.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.3.2.1.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.3.2.1.1.1
انقُل السالب الرئيسي في إلى بسط الكسر.
خطوة 1.2.3.2.1.1.2
أخرِج العامل من .
خطوة 1.2.3.2.1.1.3
ألغِ العامل المشترك.
خطوة 1.2.3.2.1.1.4
أعِد كتابة العبارة.
خطوة 1.2.3.2.1.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.3.2.1.2.1
ألغِ العامل المشترك.
خطوة 1.2.3.2.1.2.2
أعِد كتابة العبارة.
خطوة 1.2.3.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.3.3.1
اضرب في .
خطوة 1.2.4
أوجِد حل المعادلة.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.4.1
اطرح من كلا المتعادلين.
خطوة 1.2.4.2
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.4.2.1
اقسِم كل حد في على .
خطوة 1.2.4.2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.4.2.2.1
قسمة قيمتين سالبتين على بعضهما البعض ينتج عنها قيمة موجبة.
خطوة 1.2.4.2.2.2
اقسِم على .
خطوة 1.2.4.2.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.4.2.3.1
اقسِم على .
خطوة 1.3
أوجِد القيم التي يكون عندها المشتق غير معرّف.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1
عيّن قيمة القاسم في بحيث تصبح مساوية لـ لإيجاد الموضع الذي تكون فيه العبارة غير معرّفة.
خطوة 1.3.2
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.3.2.1
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 1.3.2.2
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 1.3.2.2.1
أعِد كتابة بالصيغة .
خطوة 1.3.2.2.2
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
خطوة 1.3.2.2.3
زائد أو ناقص يساوي .
خطوة 1.3.3
عيّن قيمة القاسم في بحيث تصبح مساوية لـ لإيجاد الموضع الذي تكون فيه العبارة غير معرّفة.
خطوة 1.3.4
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.3.4.1
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 1.3.4.2
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 1.3.4.2.1
أعِد كتابة بالصيغة .
خطوة 1.3.4.2.2
أخرِج الحدود من تحت الجذر، بافتراض أنها أعداد حقيقية.
خطوة 1.4
احسِب قيمة عند كل قيمة يكون عندها المشتق مساويًا لـ أو غير معرّف.
انقر لعرض المزيد من الخطوات...
خطوة 1.4.1
احسِب القيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 1.4.1.1
عوّض بقيمة التي تساوي .
خطوة 1.4.1.2
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.4.1.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 1.4.1.2.1.1
ارفع إلى القوة .
خطوة 1.4.1.2.1.2
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 1.4.1.2.1.2.1
أخرِج العامل من .
خطوة 1.4.1.2.1.2.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 1.4.1.2.1.2.2.1
أخرِج العامل من .
خطوة 1.4.1.2.1.2.2.2
ألغِ العامل المشترك.
خطوة 1.4.1.2.1.2.2.3
أعِد كتابة العبارة.
خطوة 1.4.1.2.2
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 1.4.1.2.3
اكتب كل عبارة قاسمها المشترك ، بضربها في العامل المناسب للعدد .
انقر لعرض المزيد من الخطوات...
خطوة 1.4.1.2.3.1
اضرب في .
خطوة 1.4.1.2.3.2
اضرب في .
خطوة 1.4.1.2.4
اجمع البسوط على القاسم المشترك.
خطوة 1.4.1.2.5
اطرح من .
خطوة 1.4.2
احسِب القيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 1.4.2.1
عوّض بقيمة التي تساوي .
خطوة 1.4.2.2
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.4.2.2.1
ينتج عن رفع إلى أي قوة موجبة.
خطوة 1.4.2.2.2
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
غير معرّف
غير معرّف
خطوة 1.4.3
اسرِد جميع النقاط.
خطوة 2
استبعِد النقاط غير الموجودة في الفترة.
خطوة 3
احسِب القيمة عند نقاط النهاية المُضمّنة.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
احسِب القيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 3.1.1
عوّض بقيمة التي تساوي .
خطوة 3.1.2
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 3.1.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 3.1.2.1.1
انقُل السالب أمام الكسر.
خطوة 3.1.2.1.2
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 3.1.2.1.2.1
أعِد كتابة بالصيغة .
خطوة 3.1.2.1.2.2
أخرِج العامل من .
خطوة 3.1.2.1.2.3
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 3.1.2.1.2.3.1
أخرِج العامل من .
خطوة 3.1.2.1.2.3.2
ألغِ العامل المشترك.
خطوة 3.1.2.1.2.3.3
أعِد كتابة العبارة.
خطوة 3.1.2.1.3
قسمة قيمتين سالبتين على بعضهما البعض ينتج عنها قيمة موجبة.
خطوة 3.1.2.2
اجمع الكسور.
انقر لعرض المزيد من الخطوات...
خطوة 3.1.2.2.1
اجمع البسوط على القاسم المشترك.
خطوة 3.1.2.2.2
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 3.1.2.2.2.1
اطرح من .
خطوة 3.1.2.2.2.2
اقسِم على .
خطوة 3.2
احسِب القيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1
عوّض بقيمة التي تساوي .
خطوة 3.2.2
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.2.1.1
اقسِم على .
خطوة 3.2.2.1.2
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 3.2.2.1.3
اقسِم على .
خطوة 3.2.2.1.4
اضرب في .
خطوة 3.2.2.2
اطرح من .
خطوة 3.3
اسرِد جميع النقاط.
خطوة 4
قارن قيم الموجودة لكل قيمة من قيم من أجل تحديد الحد الأقصى والحد الأدنى المطلق على مدى الفترة الزمنية المحددة. سيظهر الحد الأقصى بأعلى قيمة وسيظهر الحد الأدنى بأقل قيمة .
الحد الأقصى المطلق:
الحد الأدنى المطلق:
خطوة 5