حساب التفاضل والتكامل الأمثلة

أوجد القيمة المطقة الأكبر والأصغر ضمن المجال f(x)=-2sin(x)^2 , [pi/4,2pi]
,
خطوة 1
أوجِد النقاط الحرجة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.1.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 1.1.1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.1.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 1.1.1.3
اضرب في .
خطوة 1.1.1.4
مشتق بالنسبة إلى يساوي .
خطوة 1.1.1.5
أعِد ترتيب عوامل .
خطوة 1.1.2
المشتق الأول لـ بالنسبة إلى هو .
خطوة 1.2
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ ثم أوجِد حل المعادلة .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ .
خطوة 1.2.2
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 1.2.3
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.3.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 1.2.3.2
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.3.2.1
خُذ جيب التمام العكسي لكلا المتعادلين لاستخراج من داخل جيب التمام.
خطوة 1.2.3.2.2
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.3.2.2.1
القيمة الدقيقة لـ هي .
خطوة 1.2.3.2.3
دالة جيب التمام موجبة في الربعين الأول والرابع. لإيجاد الحل الثاني، اطرح زاوية المرجع من لإيجاد الحل في الربع الرابع.
خطوة 1.2.3.2.4
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.3.2.4.1
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 1.2.3.2.4.2
اجمع الكسور.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.3.2.4.2.1
اجمع و.
خطوة 1.2.3.2.4.2.2
اجمع البسوط على القاسم المشترك.
خطوة 1.2.3.2.4.3
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.3.2.4.3.1
اضرب في .
خطوة 1.2.3.2.4.3.2
اطرح من .
خطوة 1.2.3.2.5
أوجِد فترة .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.3.2.5.1
يمكن حساب فترة الدالة باستخدام .
خطوة 1.2.3.2.5.2
استبدِل بـ في القاعدة للفترة.
خطوة 1.2.3.2.5.3
القيمة المطلقة للعدد هي المسافة بين العدد والصفر. المسافة بين و تساوي .
خطوة 1.2.3.2.5.4
اقسِم على .
خطوة 1.2.3.2.6
فترة دالة هي ، لذا تتكرر القيم كل راديان في كلا الاتجاهين.
، لأي عدد صحيح
، لأي عدد صحيح
، لأي عدد صحيح
خطوة 1.2.4
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.4.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 1.2.4.2
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.4.2.1
خُذ الجيب العكسي لكلا المتعادلين لاستخراج من داخل الجيب.
خطوة 1.2.4.2.2
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.4.2.2.1
القيمة الدقيقة لـ هي .
خطوة 1.2.4.2.3
دالة الجيب موجبة في الربعين الأول والثاني. لإيجاد الحل الثاني، اطرح زاوية المرجع من لإيجاد الحل في الربع الثاني.
خطوة 1.2.4.2.4
اطرح من .
خطوة 1.2.4.2.5
أوجِد فترة .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.4.2.5.1
يمكن حساب فترة الدالة باستخدام .
خطوة 1.2.4.2.5.2
استبدِل بـ في القاعدة للفترة.
خطوة 1.2.4.2.5.3
القيمة المطلقة للعدد هي المسافة بين العدد والصفر. المسافة بين و تساوي .
خطوة 1.2.4.2.5.4
اقسِم على .
خطوة 1.2.4.2.6
فترة دالة هي ، لذا تتكرر القيم كل راديان في كلا الاتجاهين.
، لأي عدد صحيح
، لأي عدد صحيح
، لأي عدد صحيح
خطوة 1.2.5
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
، لأي عدد صحيح
خطوة 1.2.6
وحّد الإجابات.
، لأي عدد صحيح
، لأي عدد صحيح
خطوة 1.3
أوجِد القيم التي يكون عندها المشتق غير معرّف.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1
نطاق العبارة هو جميع الأعداد الحقيقية ما عدا ما يجعل العبارة غير معرّفة. في هذه الحالة، لا يوجد عدد حقيقي يجعل العبارة غير معرّفة.
خطوة 1.4
احسِب قيمة عند كل قيمة يكون عندها المشتق مساويًا لـ أو غير معرّف.
انقر لعرض المزيد من الخطوات...
خطوة 1.4.1
احسِب القيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 1.4.1.1
عوّض بقيمة التي تساوي .
خطوة 1.4.1.2
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.4.1.2.1
القيمة الدقيقة لـ هي .
خطوة 1.4.1.2.2
ينتج عن رفع إلى أي قوة موجبة.
خطوة 1.4.1.2.3
اضرب في .
خطوة 1.4.2
احسِب القيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 1.4.2.1
عوّض بقيمة التي تساوي .
خطوة 1.4.2.2
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.4.2.2.1
القيمة الدقيقة لـ هي .
خطوة 1.4.2.2.2
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 1.4.2.2.3
اضرب في .
خطوة 1.4.3
اسرِد جميع النقاط.
، لأي عدد صحيح
، لأي عدد صحيح
، لأي عدد صحيح
خطوة 2
استبعِد النقاط غير الموجودة في الفترة.
خطوة 3
احسِب القيمة عند نقاط النهاية المُضمّنة.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
احسِب القيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 3.1.1
عوّض بقيمة التي تساوي .
خطوة 3.1.2
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 3.1.2.1
القيمة الدقيقة لـ هي .
خطوة 3.1.2.2
طبّق قاعدة الضرب على .
خطوة 3.1.2.3
أعِد كتابة بالصيغة .
انقر لعرض المزيد من الخطوات...
خطوة 3.1.2.3.1
استخدِم لكتابة في صورة .
خطوة 3.1.2.3.2
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 3.1.2.3.3
اجمع و.
خطوة 3.1.2.3.4
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.1.2.3.4.1
ألغِ العامل المشترك.
خطوة 3.1.2.3.4.2
أعِد كتابة العبارة.
خطوة 3.1.2.3.5
احسِب قيمة الأُس.
خطوة 3.1.2.4
ارفع إلى القوة .
خطوة 3.1.2.5
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.1.2.5.1
أخرِج العامل من .
خطوة 3.1.2.5.2
أخرِج العامل من .
خطوة 3.1.2.5.3
ألغِ العامل المشترك.
خطوة 3.1.2.5.4
أعِد كتابة العبارة.
خطوة 3.1.2.6
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.1.2.6.1
ألغِ العامل المشترك.
خطوة 3.1.2.6.2
أعِد كتابة العبارة.
خطوة 3.1.2.7
اضرب في .
خطوة 3.2
احسِب القيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1
عوّض بقيمة التي تساوي .
خطوة 3.2.2
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.2.1
اطرح الدورات الكاملة البالغة حتى تصبح الزاوية أكبر من أو تساوي وأصغر من .
خطوة 3.2.2.2
القيمة الدقيقة لـ هي .
خطوة 3.2.2.3
ينتج عن رفع إلى أي قوة موجبة.
خطوة 3.2.2.4
اضرب في .
خطوة 3.3
اسرِد جميع النقاط.
خطوة 4
قارن قيم الموجودة لكل قيمة من قيم من أجل تحديد الحد الأقصى والحد الأدنى المطلق على مدى الفترة الزمنية المحددة. سيظهر الحد الأقصى بأعلى قيمة وسيظهر الحد الأدنى بأقل قيمة .
الحد الأقصى المطلق:
الحد الأدنى المطلق:
خطوة 5