حساب التفاضل والتكامل الأمثلة

أوجد القيمة المطقة الأكبر والأصغر ضمن المجال f(x)=1/x , x>=1
,
خطوة 1
أوجِد النقاط الحرجة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1.1
أعِد كتابة بالصيغة .
خطوة 1.1.1.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.1.3
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 1.1.2
المشتق الأول لـ بالنسبة إلى هو .
خطوة 1.2
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ ثم أوجِد حل المعادلة .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ .
خطوة 1.2.2
عيّن قيمة بسط الكسر بحيث تصبح مساوية لصفر.
خطوة 1.2.3
بما أن ، إذن لا توجد حلول.
لا يوجد حل
لا يوجد حل
خطوة 1.3
أوجِد القيم التي يكون عندها المشتق غير معرّف.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1
عيّن قيمة القاسم في بحيث تصبح مساوية لـ لإيجاد الموضع الذي تكون فيه العبارة غير معرّفة.
خطوة 1.3.2
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.3.2.1
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 1.3.2.2
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 1.3.2.2.1
أعِد كتابة بالصيغة .
خطوة 1.3.2.2.2
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
خطوة 1.3.2.2.3
زائد أو ناقص يساوي .
خطوة 1.4
احسِب قيمة عند كل قيمة يكون عندها المشتق مساويًا لـ أو غير معرّف.
انقر لعرض المزيد من الخطوات...
خطوة 1.4.1
احسِب القيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 1.4.1.1
عوّض بقيمة التي تساوي .
خطوة 1.4.1.2
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
غير معرّف
غير معرّف
خطوة 1.5
لا توجد قيم لـ في نطاق المسألة الأصلية بها المشتق يساوي أو غير معرّف.
لم يتم العثور على نقاط حرجة
لم يتم العثور على نقاط حرجة
خطوة 2
احسِب القيمة عند نقاط النهاية المُضمّنة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
احسِب القيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1
عوّض بقيمة التي تساوي .
خطوة 2.1.2
اقسِم على .
خطوة 2.2
اسرِد جميع النقاط.
خطوة 3
بما أنه لا توجد قيمة لـ تجعل المشتق الأول مساويًا لـ ، إذن لا توجد قيمة قصوى محلية.
لا توجد قيمة قصوى محلية
خطوة 4
قارن قيم الموجودة لكل قيمة من قيم من أجل تحديد الحد الأقصى والحد الأدنى المطلق على مدى الفترة الزمنية المحددة. سيظهر الحد الأقصى بأعلى قيمة وسيظهر الحد الأدنى بأقل قيمة .
الحد الأقصى المطلق:
لا توجد نقطة دنيا مطلقة
خطوة 5