حساب التفاضل والتكامل الأمثلة

أوجد القيمة المطقة الأكبر والأصغر ضمن المجال g(x)=-x^2+24x-109 , si*8<=x<=14 ?
, ?
خطوة 1
أوجِد النقاط الحرجة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.1.2
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.1.2.3
اضرب في .
خطوة 1.1.1.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.1.3.3
اضرب في .
خطوة 1.1.1.4
أوجِد المشتقة باستخدام قاعدة الدالة الثابتة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1.4.1
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.1.4.2
أضف و.
خطوة 1.1.2
المشتق الأول لـ بالنسبة إلى هو .
خطوة 1.2
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ ثم أوجِد حل المعادلة .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ .
خطوة 1.2.2
اطرح من كلا المتعادلين.
خطوة 1.2.3
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.3.1
اقسِم كل حد في على .
خطوة 1.2.3.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.3.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.3.2.1.1
ألغِ العامل المشترك.
خطوة 1.2.3.2.1.2
اقسِم على .
خطوة 1.2.3.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.3.3.1
اقسِم على .
خطوة 1.3
أوجِد القيم التي يكون عندها المشتق غير معرّف.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1
نطاق العبارة هو جميع الأعداد الحقيقية ما عدا ما يجعل العبارة غير معرّفة. في هذه الحالة، لا يوجد عدد حقيقي يجعل العبارة غير معرّفة.
خطوة 1.4
احسِب قيمة عند كل قيمة يكون عندها المشتق مساويًا لـ أو غير معرّف.
انقر لعرض المزيد من الخطوات...
خطوة 1.4.1
احسِب القيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 1.4.1.1
عوّض بقيمة التي تساوي .
خطوة 1.4.1.2
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.4.1.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 1.4.1.2.1.1
ارفع إلى القوة .
خطوة 1.4.1.2.1.2
اضرب في .
خطوة 1.4.1.2.1.3
اضرب في .
خطوة 1.4.1.2.2
بسّط عن طريق الجمع والطرح.
انقر لعرض المزيد من الخطوات...
خطوة 1.4.1.2.2.1
أضف و.
خطوة 1.4.1.2.2.2
اطرح من .
خطوة 1.4.2
اسرِد جميع النقاط.
خطوة 2
استبعِد النقاط غير الموجودة في الفترة.
خطوة 3
احسِب القيمة عند نقاط النهاية المُضمّنة.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
احسِب القيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 3.1.1
عوّض بقيمة التي تساوي .
خطوة 3.1.2
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 3.1.2.1
استخدِم قاعدة القوة لتوزيع الأُس.
انقر لعرض المزيد من الخطوات...
خطوة 3.1.2.1.1
طبّق قاعدة الضرب على .
خطوة 3.1.2.1.2
طبّق قاعدة الضرب على .
خطوة 3.1.2.2
ارفع إلى القوة .
خطوة 3.1.2.3
أعِد كتابة بالصيغة .
خطوة 3.1.2.4
اضرب في .
خطوة 3.1.2.5
اضرب في .
خطوة 3.1.2.6
اضرب في .
خطوة 3.2
احسِب القيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1
عوّض بقيمة التي تساوي .
خطوة 3.2.2
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.2.1.1
ارفع إلى القوة .
خطوة 3.2.2.1.2
اضرب في .
خطوة 3.2.2.1.3
اضرب في .
خطوة 3.2.2.2
بسّط عن طريق الجمع والطرح.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.2.2.1
أضف و.
خطوة 3.2.2.2.2
اطرح من .
خطوة 3.3
اسرِد جميع النقاط.
خطوة 4
بما أنه لا توجد قيمة لـ تجعل المشتق الأول مساويًا لـ ، إذن لا توجد قيمة قصوى محلية.
لا توجد قيمة قصوى محلية
خطوة 5
قارن قيم الموجودة لكل قيمة من قيم من أجل تحديد الحد الأقصى والحد الأدنى المطلق على مدى الفترة الزمنية المحددة. سيظهر الحد الأقصى بأعلى قيمة وسيظهر الحد الأدنى بأقل قيمة .
الحد الأقصى المطلق:
لا توجد نقطة دنيا مطلقة
خطوة 6