حساب التفاضل والتكامل الأمثلة

أوجد القيمة المطقة الأكبر والأصغر ضمن المجال f(x) = natural log of x-x , x>0
,
خطوة 1
أوجِد النقاط الحرجة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.1.2
مشتق بالنسبة إلى يساوي .
خطوة 1.1.1.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.1.3.3
اضرب في .
خطوة 1.1.2
المشتق الأول لـ بالنسبة إلى هو .
خطوة 1.2
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ ثم أوجِد حل المعادلة .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ .
خطوة 1.2.2
أضف إلى كلا المتعادلين.
خطوة 1.2.3
أوجِد القاسم المشترك الأصغر للحدود في المعادلة.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.3.1
يُعد إيجاد القاسم المشترك الأصغر لقائمة القيم بمثابة إيجاد المضاعف المشترك الأصغر لقواسم تلك القيم.
خطوة 1.2.3.2
المضاعف المشترك الأصغر لإحدى العبارات ولأي منها هو العبارة.
خطوة 1.2.4
اضرب كل حد في في لحذف الكسور.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.4.1
اضرب كل حد في في .
خطوة 1.2.4.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.4.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.4.2.1.1
ألغِ العامل المشترك.
خطوة 1.2.4.2.1.2
أعِد كتابة العبارة.
خطوة 1.2.4.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.4.3.1
اضرب في .
خطوة 1.2.5
أعِد كتابة المعادلة في صورة .
خطوة 1.3
أوجِد القيم التي يكون عندها المشتق غير معرّف.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1
عيّن قيمة القاسم في بحيث تصبح مساوية لـ لإيجاد الموضع الذي تكون فيه العبارة غير معرّفة.
خطوة 1.4
احسِب قيمة عند كل قيمة يكون عندها المشتق مساويًا لـ أو غير معرّف.
انقر لعرض المزيد من الخطوات...
خطوة 1.4.1
احسِب القيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 1.4.1.1
عوّض بقيمة التي تساوي .
خطوة 1.4.1.2
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.4.1.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 1.4.1.2.1.1
اللوغاريتم الطبيعي لـ يساوي .
خطوة 1.4.1.2.1.2
اضرب في .
خطوة 1.4.1.2.2
اطرح من .
خطوة 1.4.2
احسِب القيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 1.4.2.1
عوّض بقيمة التي تساوي .
خطوة 1.4.2.2
اللوغاريتم الطبيعي للصفر يساوي قيمة غير معرّفة.
غير معرّف
غير معرّف
خطوة 1.4.3
اسرِد جميع النقاط.
خطوة 2
استخدِم اختبار المشتق الأول لتحديد النقاط التي يمكن أن تمثل نقاطًا قصوى أو دنيا.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
قسّم إلى فترات منفصلة حول قيم التي تجعل المشتق الأول مساويًا لـ أو غير معرّف.
خطوة 2.2
عوّض بأي عدد، مثل ، من الفترة في المشتق الأول للتحقق مما إذا كانت النتيجة سالبة أم موجبة.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
استبدِل المتغير بـ في العبارة.
خطوة 2.2.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.2.1
انقُل السالب أمام الكسر.
خطوة 2.2.2.2
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 2.2.2.3
اجمع و.
خطوة 2.2.2.4
اجمع البسوط على القاسم المشترك.
خطوة 2.2.2.5
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.2.5.1
اضرب في .
خطوة 2.2.2.5.2
اطرح من .
خطوة 2.2.2.6
انقُل السالب أمام الكسر.
خطوة 2.2.2.7
الإجابة النهائية هي .
خطوة 2.3
عوّض بأي عدد، مثل ، من الفترة في المشتق الأول للتحقق مما إذا كانت النتيجة سالبة أم موجبة.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
استبدِل المتغير بـ في العبارة.
خطوة 2.3.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.2.1
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 2.3.2.2
اجمع و.
خطوة 2.3.2.3
اجمع البسوط على القاسم المشترك.
خطوة 2.3.2.4
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.2.4.1
اضرب في .
خطوة 2.3.2.4.2
اطرح من .
خطوة 2.3.2.5
انقُل السالب أمام الكسر.
خطوة 2.3.2.6
الإجابة النهائية هي .
خطوة 2.4
بما أن علامة المشتق الأول لم تتغيّر حول ، إذن هذه النقطة لا تمثل حدًا أقصى محليًا أو حدًا أدنى محليًا.
لا تمثل حدًا أقصى محليًا أو حدًا أدنى محليًا
خطوة 2.5
لا توجد نقاط قصوى أو دنيا محلية لـ .
لا توجد نقاط قصوى أو دنيا محلية
لا توجد نقاط قصوى أو دنيا محلية
خطوة 3
قارن قيم الموجودة لكل قيمة من قيم من أجل تحديد الحد الأقصى والحد الأدنى المطلق على مدى الفترة الزمنية المحددة. سيظهر الحد الأقصى بأعلى قيمة وسيظهر الحد الأدنى بأقل قيمة .
لا توجد نقطة قصوى مطلقة
لا توجد نقطة دنيا مطلقة
خطوة 4