إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
at
خطوة 1
خطوة 1.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.2
أوجِد المشتقة باستخدام قاعدة القسمة التي تنص على أن هو حيث و.
خطوة 1.3
أوجِد المشتقة.
خطوة 1.3.1
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.2
اضرب في .
خطوة 1.3.3
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.3.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.5
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.3.6
بسّط الحدود.
خطوة 1.3.6.1
أضف و.
خطوة 1.3.6.2
اضرب في .
خطوة 1.3.6.3
اطرح من .
خطوة 1.3.6.4
بسّط العبارة.
خطوة 1.3.6.4.1
اطرح من .
خطوة 1.3.6.4.2
انقُل السالب أمام الكسر.
خطوة 1.3.6.4.3
اضرب في .
خطوة 1.3.6.5
اجمع و.
خطوة 1.3.6.6
بسّط العبارة.
خطوة 1.3.6.6.1
اضرب في .
خطوة 1.3.6.6.2
انقُل السالب أمام الكسر.
خطوة 1.4
احسِب قيمة المشتق في .
خطوة 1.5
بسّط.
خطوة 1.5.1
بسّط القاسم.
خطوة 1.5.1.1
اطرح من .
خطوة 1.5.1.2
ارفع إلى القوة .
خطوة 1.5.2
بسّط العبارة.
خطوة 1.5.2.1
اقسِم على .
خطوة 1.5.2.2
اضرب في .
خطوة 2
خطوة 2.1
استخدِم الميل ونقطة مُعطاة للتعويض بقيمتَي و في شكل ميل النقطة ، المشتق من معادلة الميل .
خطوة 2.2
بسّط المعادلة واتركها بِشكل ميل النقطة.
خطوة 2.3
أوجِد قيمة .
خطوة 2.3.1
بسّط .
خطوة 2.3.1.1
أعِد الكتابة.
خطوة 2.3.1.2
بسّط بجمع الأصفار.
خطوة 2.3.1.3
طبّق خاصية التوزيع.
خطوة 2.3.1.4
اضرب في .
خطوة 2.3.2
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
خطوة 2.3.2.1
أضف إلى كلا المتعادلين.
خطوة 2.3.2.2
أضف و.
خطوة 3