حساب التفاضل والتكامل الأمثلة

Encuentre la Recta Tangente en x=1 f(x)=2/(x^2) ; x=1
;
خطوة 1
أوجِد قيمة المقابلة لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.1
عوّض بـ عن .
خطوة 1.2
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
احذِف الأقواس.
خطوة 1.2.2
احذِف الأقواس.
خطوة 1.2.3
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.3.1
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 1.2.3.2
اقسِم على .
خطوة 2
أوجِد المشتق الأول واحسِب القيمة عند و لإيجاد ميل خط المماس.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.2
طبّق القواعد الأساسية للأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
أعِد كتابة بالصيغة .
خطوة 2.2.2
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.2.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 2.2.2.2
اضرب في .
خطوة 2.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.4
اضرب في .
خطوة 2.5
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.5.1
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 2.5.2
جمّع الحدود.
انقر لعرض المزيد من الخطوات...
خطوة 2.5.2.1
اجمع و.
خطوة 2.5.2.2
انقُل السالب أمام الكسر.
خطوة 2.6
احسِب قيمة المشتق في .
خطوة 2.7
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.7.1
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 2.7.2
اقسِم على .
خطوة 2.7.3
اضرب في .
خطوة 3
عوّض بقيمتَي الميل والنقطة في قاعدة ميل النقطة وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.1
استخدِم الميل ونقطة مُعطاة للتعويض بقيمتَي و في شكل ميل النقطة ، المشتق من معادلة الميل .
خطوة 3.2
بسّط المعادلة واتركها بِشكل ميل النقطة.
خطوة 3.3
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1.1
أعِد الكتابة.
خطوة 3.3.1.2
بسّط بجمع الأصفار.
خطوة 3.3.1.3
طبّق خاصية التوزيع.
خطوة 3.3.1.4
اضرب في .
خطوة 3.3.2
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.2.1
أضف إلى كلا المتعادلين.
خطوة 3.3.2.2
أضف و.
خطوة 4