حساب التفاضل والتكامل الأمثلة

Encuentre la Recta Tangente en (0,1/3) f(x)=(e^x)/(x+3) , (0,1/3)
,
خطوة 1
أوجِد المشتق الأول واحسِب القيمة عند و لإيجاد ميل خط المماس.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أوجِد المشتقة باستخدام قاعدة القسمة التي تنص على أن هو حيث و.
خطوة 1.2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 1.3
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.3
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.3.4
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.4.1
أضف و.
خطوة 1.3.4.2
اضرب في .
خطوة 1.4
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.4.1
طبّق خاصية التوزيع.
خطوة 1.4.2
اطرح من .
خطوة 1.4.3
أعِد ترتيب الحدود.
خطوة 1.4.4
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 1.4.4.1
أخرِج العامل من .
خطوة 1.4.4.2
أخرِج العامل من .
خطوة 1.4.4.3
أخرِج العامل من .
خطوة 1.5
احسِب قيمة المشتق في .
خطوة 1.6
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.6.1
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 1.6.1.1
أضف و.
خطوة 1.6.1.2
أي شيء مرفوع إلى هو .
خطوة 1.6.1.3
اضرب في .
خطوة 1.6.2
بسّط القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 1.6.2.1
أضف و.
خطوة 1.6.2.2
ارفع إلى القوة .
خطوة 2
عوّض بقيمتَي الميل والنقطة في قاعدة ميل النقطة وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.1
استخدِم الميل ونقطة مُعطاة للتعويض بقيمتَي و في شكل ميل النقطة ، المشتق من معادلة الميل .
خطوة 2.2
بسّط المعادلة واتركها بِشكل ميل النقطة.
خطوة 2.3
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1.1
أضف و.
خطوة 2.3.1.2
اجمع و.
خطوة 2.3.2
أضف إلى كلا المتعادلين.
خطوة 2.3.3
أعِد ترتيب الحدود.
خطوة 3