إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
,
خطوة 1
خطوة 1.1
أعِد كتابة بالصيغة .
خطوة 1.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 1.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 1.3
أوجِد المشتقة.
خطوة 1.3.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.3
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.3.4
بسّط العبارة.
خطوة 1.3.4.1
أضف و.
خطوة 1.3.4.2
اضرب في .
خطوة 1.4
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 1.5
احسِب قيمة المشتق في .
خطوة 1.6
بسّط.
خطوة 1.6.1
بسّط القاسم.
خطوة 1.6.1.1
اطرح من .
خطوة 1.6.1.2
ارفع إلى القوة .
خطوة 1.6.2
اختزِل العبارة بحذف العوامل المشتركة.
خطوة 1.6.2.1
ألغِ العامل المشترك لـ .
خطوة 1.6.2.1.1
ألغِ العامل المشترك.
خطوة 1.6.2.1.2
أعِد كتابة العبارة.
خطوة 1.6.2.2
اضرب في .
خطوة 2
خطوة 2.1
استخدِم الميل ونقطة مُعطاة للتعويض بقيمتَي و في شكل ميل النقطة ، المشتق من معادلة الميل .
خطوة 2.2
بسّط المعادلة واتركها بِشكل ميل النقطة.
خطوة 2.3
أوجِد قيمة .
خطوة 2.3.1
بسّط .
خطوة 2.3.1.1
أعِد الكتابة.
خطوة 2.3.1.2
بسّط بجمع الأصفار.
خطوة 2.3.1.3
طبّق خاصية التوزيع.
خطوة 2.3.1.4
بسّط العبارة.
خطوة 2.3.1.4.1
أعِد كتابة بالصيغة .
خطوة 2.3.1.4.2
اضرب في .
خطوة 2.3.2
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
خطوة 2.3.2.1
اطرح من كلا المتعادلين.
خطوة 2.3.2.2
اطرح من .
خطوة 3