حساب التفاضل والتكامل الأمثلة

Encuentre la Recta Tangente en (1,0) x^2-xy-y^2=1 , (1,0)
,
خطوة 1
أوجِد المشتق الأول واحسِب القيمة عند و لإيجاد ميل خط المماس.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أوجِد مشتقة المتعادلين.
خطوة 1.2
أوجِد مشتقة المتعادل الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.2.1.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.2.2
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.2.2.2
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 1.2.2.3
أعِد كتابة بالصيغة .
خطوة 1.2.2.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.2.2.5
اضرب في .
خطوة 1.2.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.2.3.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.3.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 1.2.3.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.2.3.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 1.2.3.3
أعِد كتابة بالصيغة .
خطوة 1.2.3.4
اضرب في .
خطوة 1.2.4
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.4.1
طبّق خاصية التوزيع.
خطوة 1.2.4.2
احذِف الأقواس غير الضرورية.
خطوة 1.2.4.3
أعِد ترتيب الحدود.
خطوة 1.3
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.4
عدّل المعادلة بمساواة قيمة الطرف الأيسر بقيمة الطرف الأيمن.
خطوة 1.5
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.5.1
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 1.5.1.1
اطرح من كلا المتعادلين.
خطوة 1.5.1.2
أضف إلى كلا المتعادلين.
خطوة 1.5.2
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 1.5.2.1
أخرِج العامل من .
خطوة 1.5.2.2
أخرِج العامل من .
خطوة 1.5.2.3
أخرِج العامل من .
خطوة 1.5.3
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.5.3.1
اقسِم كل حد في على .
خطوة 1.5.3.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 1.5.3.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.5.3.2.1.1
ألغِ العامل المشترك.
خطوة 1.5.3.2.1.2
اقسِم على .
خطوة 1.5.3.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 1.5.3.3.1
اجمع البسوط على القاسم المشترك.
خطوة 1.5.3.3.2
أخرِج العامل من .
خطوة 1.5.3.3.3
أخرِج العامل من .
خطوة 1.5.3.3.4
أخرِج العامل من .
خطوة 1.5.3.3.5
أعِد كتابة بالصيغة .
خطوة 1.5.3.3.6
أخرِج العامل من .
خطوة 1.5.3.3.7
أخرِج العامل من .
خطوة 1.5.3.3.8
أخرِج العامل من .
خطوة 1.5.3.3.9
أعِد كتابة بالصيغة .
خطوة 1.5.3.3.10
ألغِ العامل المشترك.
خطوة 1.5.3.3.11
أعِد كتابة العبارة.
خطوة 1.6
استبدِل بـ .
خطوة 1.7
احسِب القيمة عند و.
انقر لعرض المزيد من الخطوات...
خطوة 1.7.1
استبدِل المتغير بـ في العبارة.
خطوة 1.7.2
استبدِل المتغير بـ في العبارة.
خطوة 1.7.3
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 1.7.3.1
اضرب في .
خطوة 1.7.3.2
اضرب في .
خطوة 1.7.3.3
أضف و.
خطوة 1.7.4
بسّط القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 1.7.4.1
اضرب في .
خطوة 1.7.4.2
أضف و.
خطوة 1.7.5
اقسِم على .
خطوة 2
عوّض بقيمتَي الميل والنقطة في قاعدة ميل النقطة وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.1
استخدِم الميل ونقطة مُعطاة للتعويض بقيمتَي و في شكل ميل النقطة ، المشتق من معادلة الميل .
خطوة 2.2
بسّط المعادلة واتركها بِشكل ميل النقطة.
خطوة 2.3
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
أضف و.
خطوة 2.3.2
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.2.1
طبّق خاصية التوزيع.
خطوة 2.3.2.2
اضرب في .
خطوة 3