حساب التفاضل والتكامل الأمثلة

Encuentre la Recta Tangente en (0,0) y=xe^(-x^2) , (0,0)
,
خطوة 1
أوجِد المشتق الأول واحسِب القيمة عند و لإيجاد ميل خط المماس.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 1.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 1.2.2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 1.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 1.3
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.3
اضرب في .
خطوة 1.4
ارفع إلى القوة .
خطوة 1.5
ارفع إلى القوة .
خطوة 1.6
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 1.7
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 1.7.1
أضف و.
خطوة 1.7.2
انقُل إلى يسار .
خطوة 1.8
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.9
اضرب في .
خطوة 1.10
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.10.1
أعِد ترتيب الحدود.
خطوة 1.10.2
أعِد ترتيب العوامل في .
خطوة 1.11
احسِب قيمة المشتق في .
خطوة 1.12
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.12.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 1.12.1.1
ينتج عن رفع إلى أي قوة موجبة.
خطوة 1.12.1.2
اضرب في .
خطوة 1.12.1.3
ينتج عن رفع إلى أي قوة موجبة.
خطوة 1.12.1.4
اضرب في .
خطوة 1.12.1.5
أي شيء مرفوع إلى هو .
خطوة 1.12.1.6
اضرب في .
خطوة 1.12.1.7
ينتج عن رفع إلى أي قوة موجبة.
خطوة 1.12.1.8
اضرب في .
خطوة 1.12.1.9
أي شيء مرفوع إلى هو .
خطوة 1.12.2
أضف و.
خطوة 2
عوّض بقيمتَي الميل والنقطة في قاعدة ميل النقطة وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.1
استخدِم الميل ونقطة مُعطاة للتعويض بقيمتَي و في شكل ميل النقطة ، المشتق من معادلة الميل .
خطوة 2.2
بسّط المعادلة واتركها بِشكل ميل النقطة.
خطوة 2.3
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
أضف و.
خطوة 2.3.2
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.2.1
اضرب في .
خطوة 2.3.2.2
أضف و.
خطوة 3