إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
,
خطوة 1
خطوة 1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.2
احسِب قيمة .
خطوة 1.2.1
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 1.2.2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 1.2.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3
احسِب قيمة .
خطوة 1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.3.2
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 1.3.3
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 1.3.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.5
اضرب في .
خطوة 1.4
احسِب قيمة .
خطوة 1.4.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.4.2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 1.5
بسّط.
خطوة 1.5.1
طبّق خاصية التوزيع.
خطوة 1.5.2
جمّع الحدود.
خطوة 1.5.2.1
اطرح من .
خطوة 1.5.2.1.1
انقُل .
خطوة 1.5.2.1.2
اطرح من .
خطوة 1.5.2.2
أضف و.
خطوة 1.5.2.3
أضف و.
خطوة 1.5.2.4
أضف و.
خطوة 1.5.3
أعِد ترتيب عوامل .
خطوة 1.5.4
أعِد ترتيب العوامل في .
خطوة 1.6
احسِب قيمة المشتق في .
خطوة 1.7
بسّط.
خطوة 1.7.1
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 1.7.2
اضرب في .
خطوة 1.7.3
بسّط.
خطوة 2
خطوة 2.1
استخدِم الميل ونقطة مُعطاة للتعويض بقيمتَي و في شكل ميل النقطة ، المشتق من معادلة الميل .
خطوة 2.2
بسّط المعادلة واتركها بِشكل ميل النقطة.
خطوة 2.3
أوجِد قيمة .
خطوة 2.3.1
بسّط .
خطوة 2.3.1.1
أعِد الكتابة.
خطوة 2.3.1.2
بسّط بالضرب.
خطوة 2.3.1.2.1
طبّق خاصية التوزيع.
خطوة 2.3.1.2.2
انقُل إلى يسار .
خطوة 2.3.1.3
أعِد كتابة بالصيغة .
خطوة 2.3.2
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
خطوة 2.3.2.1
أضف إلى كلا المتعادلين.
خطوة 2.3.2.2
جمّع الحدود المتعاكسة في .
خطوة 2.3.2.2.1
أضف و.
خطوة 2.3.2.2.2
أضف و.
خطوة 3