حساب التفاضل والتكامل الأمثلة

Encuentre la Recta Tangente en (0,9) y=(e^(2x)-4)^2 , (0,9)
,
خطوة 1
أوجِد المشتق الأول واحسِب القيمة عند و لإيجاد ميل خط المماس.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 1.1.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.3
استبدِل كافة حالات حدوث بـ .
خطوة 1.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.3
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 1.3.2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 1.3.3
استبدِل كافة حالات حدوث بـ .
خطوة 1.4
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 1.4.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.4.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.4.3
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 1.4.3.1
اضرب في .
خطوة 1.4.3.2
انقُل إلى يسار .
خطوة 1.4.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.4.5
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 1.4.5.1
أضف و.
خطوة 1.4.5.2
اضرب في .
خطوة 1.5
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.5.1
طبّق خاصية التوزيع.
خطوة 1.5.2
طبّق خاصية التوزيع.
خطوة 1.5.3
جمّع الحدود.
انقر لعرض المزيد من الخطوات...
خطوة 1.5.3.1
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 1.5.3.1.1
انقُل .
خطوة 1.5.3.1.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 1.5.3.1.3
أضف و.
خطوة 1.5.3.2
اضرب في .
خطوة 1.6
احسِب قيمة المشتق في .
خطوة 1.7
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.7.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 1.7.1.1
اضرب في .
خطوة 1.7.1.2
أي شيء مرفوع إلى هو .
خطوة 1.7.1.3
اضرب في .
خطوة 1.7.1.4
اضرب في .
خطوة 1.7.1.5
أي شيء مرفوع إلى هو .
خطوة 1.7.1.6
اضرب في .
خطوة 1.7.2
اطرح من .
خطوة 2
عوّض بقيمتَي الميل والنقطة في قاعدة ميل النقطة وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.1
استخدِم الميل ونقطة مُعطاة للتعويض بقيمتَي و في شكل ميل النقطة ، المشتق من معادلة الميل .
خطوة 2.2
بسّط المعادلة واتركها بِشكل ميل النقطة.
خطوة 2.3
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
أضف و.
خطوة 2.3.2
أضف إلى كلا المتعادلين.
خطوة 3