حساب التفاضل والتكامل الأمثلة

Encuentre la Recta Tangente en (-1,0) f(x)=x^3+1 , (-1,0)
,
خطوة 1
أوجِد المشتق الأول واحسِب القيمة عند و لإيجاد ميل خط المماس.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.4
أضف و.
خطوة 1.5
احسِب قيمة المشتق في .
خطوة 1.6
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.6.1
ارفع إلى القوة .
خطوة 1.6.2
اضرب في .
خطوة 2
عوّض بقيمتَي الميل والنقطة في قاعدة ميل النقطة وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.1
استخدِم الميل ونقطة مُعطاة للتعويض بقيمتَي و في شكل ميل النقطة ، المشتق من معادلة الميل .
خطوة 2.2
بسّط المعادلة واتركها بِشكل ميل النقطة.
خطوة 2.3
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
أضف و.
خطوة 2.3.2
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.2.1
طبّق خاصية التوزيع.
خطوة 2.3.2.2
اضرب في .
خطوة 3