إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
,
خطوة 1
خطوة 1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.2
احسِب قيمة .
خطوة 1.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.2.3
اضرب في .
خطوة 1.3
احسِب قيمة .
خطوة 1.3.1
استخدِم لكتابة في صورة .
خطوة 1.3.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.3.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.4
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 1.3.5
اجمع و.
خطوة 1.3.6
اجمع البسوط على القاسم المشترك.
خطوة 1.3.7
بسّط بَسْط الكسر.
خطوة 1.3.7.1
اضرب في .
خطوة 1.3.7.2
اطرح من .
خطوة 1.3.8
انقُل السالب أمام الكسر.
خطوة 1.3.9
اجمع و.
خطوة 1.3.10
اجمع و.
خطوة 1.3.11
انقُل إلى القاسم باستخدام قاعدة الأُسس السالبة .
خطوة 1.3.12
أخرِج العامل من .
خطوة 1.3.13
ألغِ العوامل المشتركة.
خطوة 1.3.13.1
أخرِج العامل من .
خطوة 1.3.13.2
ألغِ العامل المشترك.
خطوة 1.3.13.3
أعِد كتابة العبارة.
خطوة 1.3.14
انقُل السالب أمام الكسر.
خطوة 1.4
احسِب قيمة المشتق في .
خطوة 1.5
بسّط.
خطوة 1.5.1
بسّط كل حد.
خطوة 1.5.1.1
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 1.5.1.2
اقسِم على .
خطوة 1.5.1.3
اضرب في .
خطوة 1.5.2
اطرح من .
خطوة 2
خطوة 2.1
استخدِم الميل ونقطة مُعطاة للتعويض بقيمتَي و في شكل ميل النقطة ، المشتق من معادلة الميل .
خطوة 2.2
بسّط المعادلة واتركها بِشكل ميل النقطة.
خطوة 2.3
أوجِد قيمة .
خطوة 2.3.1
بسّط .
خطوة 2.3.1.1
أعِد الكتابة.
خطوة 2.3.1.2
بسّط بجمع الأصفار.
خطوة 2.3.1.3
طبّق خاصية التوزيع.
خطوة 2.3.1.4
اضرب في .
خطوة 2.3.2
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
خطوة 2.3.2.1
أضف إلى كلا المتعادلين.
خطوة 2.3.2.2
أضف و.
خطوة 3