حساب التفاضل والتكامل الأمثلة

أوجد التكامل باستخدام تعويض u تكامل (4x^3+x) الجذر التربيعي لـ 4x^2+1 بالنسبة إلى x
خطوة 1
لنفترض أن . إذن ، لذا . أعِد الكتابة باستخدام و.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
افترض أن . أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1
أوجِد مشتقة .
خطوة 1.1.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.3.3
اضرب في .
خطوة 1.1.4
أوجِد المشتقة باستخدام قاعدة الدالة الثابتة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.4.1
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.4.2
أضف و.
خطوة 1.2
أعِد كتابة المسألة باستخدام و.
خطوة 2
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
استخدِم لكتابة في صورة .
خطوة 2.2
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
اضرب في .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1.1
ارفع إلى القوة .
خطوة 2.2.1.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 2.2.2
اكتب في صورة كسر ذي قاسم مشترك.
خطوة 2.2.3
اجمع البسوط على القاسم المشترك.
خطوة 2.2.4
أضف و.
خطوة 2.3
اجمع و.
خطوة 3
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 4
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 5
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 5.1
أعِد كتابة بالصيغة .
خطوة 5.2
أعِد كتابة بالصيغة .
خطوة 6
استبدِل كافة حالات حدوث بـ .