حساب التفاضل والتكامل الأمثلة

أوجد التكامل باستخدام تعويض u تكامل (4x)/(3(9-2x^2)^(4/3)) بالنسبة إلى x
خطوة 1
لنفترض أن . إذن ، لذا . أعِد الكتابة باستخدام و.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
افترض أن . أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1
أوجِد مشتقة .
خطوة 1.1.2
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.2.2
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.3.3
اضرب في .
خطوة 1.1.4
اطرح من .
خطوة 1.2
أعِد كتابة المسألة باستخدام و.
خطوة 2
انقُل السالب أمام الكسر.
خطوة 3
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 4
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 5
طبّق القواعد الأساسية للأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 5.1
انقُل خارج القاسم برفعها إلى القوة .
خطوة 5.2
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 5.2.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 5.2.2
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 5.2.2.1
اجمع و.
خطوة 5.2.2.2
اضرب في .
خطوة 5.2.3
انقُل السالب أمام الكسر.
خطوة 6
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 7
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 7.1
أعِد كتابة بالصيغة .
خطوة 7.2
أعِد كتابة بالصيغة .
خطوة 7.3
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 7.3.1
انقُل السالب أمام الكسر.
خطوة 7.3.2
اضرب في .
خطوة 7.3.3
اضرب في .
خطوة 7.3.4
اضرب في .
خطوة 7.3.5
ألغِ العامل المشترك.
خطوة 7.3.6
أعِد كتابة العبارة.
خطوة 8
استبدِل كافة حالات حدوث بـ .