حساب التفاضل والتكامل الأمثلة

أوجد التكامل باستخدام تعويض u التكامل من 0 إلى 1 لـ xe^(x^2) بالنسبة إلى x
خطوة 1
لنفترض أن . إذن ، لذا . أعِد الكتابة باستخدام و.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
افترض أن . أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1
أوجِد مشتقة .
خطوة 1.1.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 1.1.2.2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 1.1.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 1.1.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.1.4
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.4.1
أعِد ترتيب عوامل .
خطوة 1.1.4.2
أعِد ترتيب العوامل في .
خطوة 1.2
عوّض بالنهاية الدنيا عن في .
خطوة 1.3
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1
ينتج عن رفع إلى أي قوة موجبة.
خطوة 1.3.2
أي شيء مرفوع إلى هو .
خطوة 1.4
عوّض بالنهاية العليا عن في .
خطوة 1.5
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.5.1
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 1.5.2
بسّط.
خطوة 1.6
ستُستخدم القيم التي تم إيجادها لـ و في حساب قيمة التكامل المحدد.
خطوة 1.7
أعِد كتابة المسألة باستخدام و والنهايات الجديدة للتكامل.
خطوة 2
طبّق قاعدة الثابت.
خطوة 3
بسّط الإجابة.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
احسِب قيمة في وفي .
خطوة 3.2
اجمع و.
خطوة 3.3
اضرب في .
خطوة 4
يمكن عرض النتيجة بصيغ متعددة.
الصيغة التامة:
الصيغة العشرية: